Fraternal Twins Errata

Proof of Proposition 5.17 (pages 111-112). On the seventh line of the proof, the "trumpet" $T_{\frac{1}{2}}(\hat{x}, x, \delta r)$ should be $T_{\frac{1}{2}}(\hat{x}, p, \delta r)$, and the statement should hold for all p in the connected component of $\Omega_s \cap B_{10\Lambda r}(x)$ which contains $B_{\delta r}(\hat{x})$. This being the case, it is convenient to denote the latter set by $U_{10\Lambda r}(x,s)$.

"By Proposition 2.24, it therefore suffices to show that, whenever $r^{-1} = \mathrm{H}(x,t)$ is sufficiently large, the trumpet $T_{\frac{1}{2}}(\hat{x},p,\delta r)$ about the point $\hat{x} \doteqdot x - r \, \mathrm{N}(x,t)$ is contained in $U_{10\Lambda r}(x,s)$, the connected component of $\Omega_s \cap B_{10\Lambda r}(x)$ which contains $B_{\delta r}(\hat{x})$, for all $p \in U_{10\Lambda r}(x,s)$ and all $s \in (t-100\Lambda^2 r^2,t] \in [0,T)$ (cf. Proposition 2.26). Let us denote by $Q(\delta,10\Lambda)$ the set of pairs (x,t) which do satisfy this property.

Suppose then that, contrary to the claim, there is a sequence of spacetime points (x_j,t_j) with $r_j^{-1}\doteqdot H(x_j,t_j)\to\infty$ such that $(x_j,t_j)\notin Q(\delta,\Lambda)$. By a "point-picking" argument (cf. (5.22) above), we can choose our sequence so that if $t\le t_j$ and $H(x,t)\ge 4H(x_j,t_j)$, then $(x,t)\in Q(\delta,\Lambda)$. Now, by assumption, we can find a time $s_j\in (t_j-100\Lambda^2r^2,t_j]$ and a point $p_j\in U_{10\Lambda}(x_j,s_j)$ such that the trumpet $T_{\frac{1}{2}}(\hat{x}_j,p_j,\delta r_j)$ intersects $\partial\Omega_{s_j}$ somewhere in the connected component of $\overline{\Omega}_{s_j}\cap B_{10\Lambda r}(x)$ which contains $B_{\delta r}(\hat{x})$. But then, by "moving" the mouthpiece of this trumpet, we can find another trumpet $T_{\frac{1}{2}}(\hat{x}_j,\tilde{p}_j,\delta r_j)$ which does lie in the connected component of $\overline{\Omega}_{s_j}\cap B_{10\Lambda r}(x)$ which contains $B_{\delta r}(\hat{x})$ but makes contact with $\partial\Omega_{s_i}$ at some point, y_j say."

A few lines below, some typos appear in the displayed math, which should read

$$\frac{\mathrm{H}(x_j,t_j)}{\mathrm{H}(y_j,s_j)} \le -\gamma^{-1} \frac{\kappa(y_j,s_j)}{\mathrm{H}(y_j,s_j)}.$$