The Ricci flow — a
minicourse

The Ricci flow is a deformation process for Riemannian metrics which, in a suitable
“gauge”, formally resembles the heat equation, and indeed exhibits a number of phe-
nomena which are shared by other diffusion processes. These diffusive properties are
highly desirable from the point of view of geometric and topological applications — in
principle, the Ricci flow smooths out rough metrics and diffuses their curvature, driving
them towards ideal and canonical equilibrium states, thereby restricting the possible
topologies which the initial metric can carry. Alas, life is never so straightforward:
the Ricci flow equation (suitably interpreted) is degenerate and non-linear, and suffers
singularities in finite time, all of which prevent the direct implementation of this pro-
gramme. Nonetheless, it has proved itself to be one of the most fruitful tools available
to the geometric analyst, leading (famously) to proofs of the Poincaré and Thurston
conjectures, amongst manifold further important advances.

Geometric motivations aside, the Ricci flow is the canonical heat equation for Rie-
mannian metrics, and gives rise to many remarkable and beautiful geometric structures
(solitons, ancient solutions) and analytic features (differential Harnack inequalities,
pseudolocality, a gradient-like structure) and as such is a fascinating area of study for
topologists, geometers, and analysts alike.

These notes document material presented in a series of lectures at the summer
school “geometric flows and relativity” hosted by the Centro de Matemaética of the
Universidad de la Republica in Montevideo, Uruguay, in March 2024. Our goal was
to provide a fast-paced introduction to the Ricci flow, leading up to Perelman’s key
breakthroughs. As such, we omit a number of important aspects of the theory and
do not always provide a detailed proof of stated results. For a more comprehensive
treatment, we refer the reader to the bibliography. Our main sources have been the
books [31/15,16,32]; we have also found the lecture notes [6] to be a very useful overview
of the field.
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We have included a number of exercises for each lecture. Some of these should be
done from scratch, while for others the intention is to fill gaps in the lecture using the
aforementioned references.

Mat Langford
Montevideo, March 13, 2024
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1. THE FUNDAMENTALS

Lecture 1. The fundamentals

A smooth one-parameter family {g; }+c; of smooth metrics g; on a smootlﬂ n-manifold
M™ EVOLVES BY/SATISFIES/IS A RiccCI FLOWE| if

d
agt = —2Rcy, , (1.1)

where Rc; is the Ricci tensor associated to g; and the time derivative is understood
fibrewise, in the usual sense: for any = € M,

d T (gt—i-h)x - (gt)x
L) = lim dthle — e
<dtgt)z g h

If we introduce local coordinates {x’ : U — R}™ ; in some neighbourhood U C M
of a point x € M, then we may represent (g;), and (Rc;), as

(9t)z = 9ij(x, t)da:i @ dz? and (Reg, )z = Reyj(z, t)dmi ® dat
and we see thatE|

dgi j
ot

= — QRCij
= - QQMRmikjé
= 20" (8:Tkje — OkTije + T Time — DT ome)

_ w9y Pgre  Pgi Pgu
9\ 9zkost T 0zided  0r0x’  0rkoz

1
+ igkegm" [ (OkGjn + 0jGkn — Ongkj) (0iGme + OmGic — OeGim)

(1.2)

— (0igjn + 0j9in — Ongij) 8m9k4 ,

a system of nonlinear second order partial differential equations. Unappealing, cer-
tainly, but it does have the redeeming feature that it is weakly parabolic (which explains
the choice of sign on the right hand side).

We can make this a little nicer (and gain some very important intuition) by be-
ing more selective in our choice of “gauge”: about any point x € M, the existence
of a HARMONIC COORDINATE chart can be established using standard results on the
existence and regularity of solutions to elliptic partial differential equations. These are
coordinates satisfying

Azt =0,

1Henceforth, we shall stop saying “smooth” so irritatingly often, leaving it for the most part to the reader
to decide how regular they wish a given object to be in order to make sense of a given statement.

°In fact, we shall soon replace this by a more abstract definition, which may appear more complicated at
first but has many advantages. The two definitions are equivalent in the sense that there is a canonical bijection
between their solutions.

3Note that we follow the convention Rm(X,Y,Z,W) = g(VyVxZ — VxVyZ — V|y x)Z,W) for the
Riemann curvature tensor.
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where A is the Laplace—Beltrami operator induced by g; as such, in harmonic coordi-
nates (at a given time), the Ricci flow system can be seen to take the form

dgij  ~~ gy
gt] = kZ:l 82’“?9?5’“ + terms of lower order . (1.3)

This suggests that we should view the Ricci flow as a kind of geometric heat
equation for Riemannian metrics (and also provides justification for the factor of 2
on the right hand side of the equation). We shall soon see that it is quite right to do so,
but before pursuing this further, let us first establish some additional useful intuition,
this time more geometric.

1.1 Invariance properties. The Ricci flow is invariant under certain canonical op-
erations, in the (not at all precise) sense that these operations take one solution and
produce another.

1.1.1 Pullback by diffeomorphisms. If {g }ter is a Ricci flow on M and ¢ is a self-
diffeomorphism of M, then (since the Ricci curvature is invariant under diffeomor-

phisms)
d ., d
%Qb gt = %gt s = _2(cht)¢(a:) = —2(Regrg, )u -

That is, {¢*gt}ter is a Ricci flow on M. This is not at all surprising.

On the other hand, if we allow the diffeomorphism to change with timeﬁ), then we
pick up an extra term due to the chain rule:

d *

a(ﬁtgt = _QR%fgt + Ly (67 9:) ;
where V is the vector field defined by

d
V(9w 1) = (> di(a)).
The converse of this statement is that if g; satisfies the equation
79 = —2Rcg, + Ly gt

for some vector field V, then the family of metrics ¢* ,g; satisfies Ricci flow, where ¢
is the flow of V.
1.1.2 Time translations. If {g:}ier is a Ricci flow on M and 7 € R, then clearly
{9t++}ter—+ is a Ricci flow on M.
1.1.83 Parabolic rescaling. If {g:}1er is a Ricci flow on M and A > 0, then (since the
Ricci tensor is scale invariant)

d
(MQQM)x — 9(Rey, L), = 2(Rexsy ),

That is, {\2g\—2; }ien2s is a Ricci flow on M.

4We shall always assume the group property ¢¢; © ¢t, = ¢, +t, for one-parameter families of diffeomor-
phisms ¢;.
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1. THE FUNDAMENTALS

1.1.4 Orthogonal sums with flat factors. If {g; }1er is a Ricci flow on M and k € N, then
{g: + grek }eer is a Ricci flow on M x RE.

1.1.5 Quotients and lifts. Let {g:}ter be a Ricci flow on M and G a group whose
elements are isometries of g; for all t. If G acts freely and transitively, then the induced
metrics on M /G evolve by Ricci flow. Conversely, if 7 : N — M is a covering map,
then the lifts of g; to N evolve by Ricci flow.

1.2 Self-similar solutions (a.k.a. solitons). The continuous symmetries of Ricci
flow (diffeomorphism, time translation and scaling) give rise to special types of so-
lutions: those that evolve purely by some combination of these symmetries. There
are three primary types (but more generally one might consider combinations of these
motions).

1.2.1 Steady self-similar solutions. A solution {g;}+cr to Ricci flow on a manifold M is
called a STEADY SELF-SIMILAR SOLUTION if there is a one-parameter family of diffeo-
morphisms {¢; }ser of M such that

Grgt—c = Gt

for all € and ¢. Differentiating with respect to € at ¢ = 0, we find that such a solution
must satisfy the equation

0= RCgt + %Evgt
for all ¢.

Conversely, if a Riemannian manifold (M, g) satisfies
0=Rc+ %Evg

for some vector field V', whose flow is ¢, then the family of metrics {g: = ¢} g}icr
satisfies

d d * ES *
=9t = —| e = Lvgt = Lvd g = ¢;Lvg = —2¢;Reg = —2Rcy, .
dt de |._g

1.2.2 Shrinking/expanding self-similar solutions. A solution {g:}+er to Ricci flow on
a manifold M is called a HOMOTHETIC SELF-SIMILAR SOLUTION if there is a one-
parameter family of diffeomorphisms {¢;}icr of M such that
¥ Gl ge-2e1 = g1
for all ¢t € I and ¢ such that e~ ¢t € I. Differentiating with respect to € at ¢ = 0, we
find that such a solution must satisfy the equation
0 =g+ 2tRey, + 2Ly g

for all £. There are two cases: if I = (—00,0), then {g;}+c(—o0,0) is called a SHRINKING
SELF-SIMILAR SOLUTION. If I = (0, 00), then {g: };c(0,00) is called an EXPANDING SELF-
SIMILAR SOLUTION

Conversely, if a Riemannian manifold (M, g) satisfies

O:g—Rc%—%EVg
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for some vector field V', then the family of metrics {g; = —2t¢* log \/ftg}tER satisfies

d .
pril Prog v—1(—29 — Lvg) = —2Rcy, .

If a Riemannian manifold (M, g) satisfies
0=g+Rc+iLyg
for some vector field V', then the family of metrics {g; = 2t¢

d *
79 = P vi(29 + Lvg) = —2Rey, .

i"og \/gg}teR satisfies

1.2.83 Examples: Einstein metrics. Recall that a Riemannian manifold (M, g) is EIN-
STEIN if
Rec= Mg

for some A € R (A € {—1,0,1} modulo scaling). Einstein metrics provide examples of
“trivial” soliton Ricci flows: if A =0, e.g. (M",g) = (R", grn), then {g; = g}1c(—00,00)
is a steady self-similar Ricci flow (in this case sTATIC), if A = —1, e.g. (M™,g) =
(H™, gun), then {g; = 2tg}ic(0,00) is an expanding self-similar Ricci flow, and if A = 1,
e.g. (M",g) = (5", gsn), then {g: = —2tg}ic(—c0,0) is a shrinking self-similar Ricci
flow.

Observe that the static Ricci flow ¢ — g; = ggrn on Euclidean space R™ (for example)
may also be viewed, not quite trivially, as a steady Ricci flow by pulling back along
the flow ¢ of any Killing vector field K (since Lxgrr = 0). Similarly, we may view
Fuclidean space as an expanding or shrinking Ricci flow by pulling back along the flow
of the conformally Killing radial vector field X = x'0; or its negative (since £y grn =
2gRn).

1.3 Explicit solutions. Certain “explicit” solutions can be constructed “by hand”
by imposing suitable symmetry or algebraic ansiatze. We present three examples here,
but there are a great many more examples which have been discovered by analogous
methods.

1.3.1 Mazimal symmetry. By imposing a large enough symmetry group, the Ricci flow
equation may be reduced to a (possibly highly complicated) system of ordinary differ-
ential equations.

Example 1.1 (The shrinking sphere). We seek a solution to Ricci flow on S™ starting
from a round metric, g9 = r%gsn. Since we expect roundness to be preserved, we
suppose a priori that the timeslices are always round,

gt =17(t)gsn -
The Ricci tensor of g; is then
-2
Rey, = Reyzy,, = Reggn = glsn =77 791,
while its time derivative is

/

d r
ggt = 2rr'ggn = 2?975 .
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Equating the two yields 7' = 1, and hence

2
r2(t)=rg —2t, te (—00, ).

We can play a similar game with self-similar solutions. Though in this case, since
the time evolution is already trivial, we may decrease the degree of symmetry by one
degree of freedom.

Example 1.2 (Hamilton’s cigar soliton). We seek a two dimensional steady soliton on
the plane which is circle fibred. I.e. a metric on R? which takes the form

g = dr® + ¢*(r)d#?

in polar coordinates and satisfies

—Rc = %Evg
for some vector field V' = f(r)0,. In two dimensions, the Ricci curvature is just
Rc = Kg, where K is the GAUSS CURVATURE, which in our case is given by K = I

P
The Lie derivative term is found to be

%ng = fuds® + fﬁ”wz‘ do? .

Equating the two, we find that

fr_ ¥r
foow
So f = M, and hence
¢Tr = Mwwra

which, under the polar coordinate compatibility conditions (i) admits a smooth odd
extension about r = 0, where 1, = 1), is solved by
¥ = Atanh(\"17).

When A\ = 1, the resulting metric

g = dr? + tanh?r d?
is called HAMILTON’S CIGAR. (The parameter A merely induces a scaling of the “stan-
dard” cigar.)

Setting V' = —2tanh r0, yields the flow equation
ds

o = — 2tanhs

s(r,0) =r,
which is solved by
sinh s(r,t) = e sinh 7.
So Hamilton’s cigar gives rise to the Ricci flow
cosh?r

= Ty . (dr? + tanh? r d6?).

g

Cigar solutions of different scales may be obtained by parabolic rescaling.
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Example 1.3 (Bryant’s radio-dish soliton). We may play the same game in higher
dimensions. We now seek an O(n)-invariant metric

g =dr? +4*(r)ggn
on R™ (n > 3). This leads to the system

f=(n— 1)‘”1;’" L+ (n— 2)(1— ) = i

Upon making suitable substitutions, we again are able to obtain a global solution
satisfying the required compatibility conditions (see e.g. [14]). When n > 3, it behaves
as

P~ T as T — 0.

These basic ideas have a vast generalization: recall that a HOMOGENEOUS SPACE
may be regarded as a Riemannian manifold (M, g) whose isometry group acts transi-
tively. In short, the manifold “looks the same from any vantage point”. This degree
of symmetry guarantees that the curvature tensor at any given point is determined
algebraically by the metric at that point; if we impose the ansatz that the isometry
group is preserved, this reduces the Ricci flow to a system of ordinary differential equa-
tions. Similar considerations apply to homogeneously fibred solitons (though additional
compatibility conditions may be required at any singular fibres). For a much more com-
prehensive examination of the Ricci flow on homogeneous geometries, see Chow and
Knopf [15].

1.4 Short time existence and uniqueness of solutions. We would like to exhibit
the Ricci flow equation as an equation or system of equations for which standard
methods of partial differential equations are known to apply. There is indeed a general
short-time existence theory which applies to strictly parabolic second order partial
differential equations in vector bundles over compact manifolds. Unfortunately, this
cannot be applied to the Ricci flow due to the lack of strict parabolicity.

For non-linear equations, parabolicity is determined by the linearization.
Lemma 1.1 (Linearization of the Ricci flow). Suppose that the two parameter family

of metrics gi, t € I, € € (—eop,€0), forms a one-parameter family of Ricci flows {g5 }ier-
Set g; = g?. The variation field hy = d%}gzo g; satisfies, in any local coordinate chart,

d
&hi]’ = gkz (Vnghij + Vithkg — vévjhik — Vkvihjg) . (1.4)
Proof. We leave the proof as an exercise. O

The equation is weakly but not strictly parabolic. It turns out that the lack
of strict parabolicity is due precisely to the Bianchi identities. Treating the Bianchi
identities as a constraint, Hamilton 23] is able to prove short-time existence using
direct methods (in particular, the Nash—-Moser implicit function theorem). Soon after
Hamilton’s work, de Turck found a way to relate the Ricci flow to a strictly parabolic
equation, to which the standard theory may be more readily applied.

6



1. THE FUNDAMENTALS

Theorem 1.2 (Short time existence and uniqueness). Let M™ be a compact manifold.
Given a metric go on M there exists 6 > 0 and a Ricci flow {gi}1e(0,5) on M such that g,
converges uniformly to go ast — 0 (in the smooth sense if gy is smooth). Moreover, any
other Ricci flow starting from go agrees with g, on their common interval of existence.
Finally, the Ricci flow {gt}iec(0,5) depends continuously on go (in the smooth sense if go
is smooth).

Sketch of the de Turck argument. Fix some background metric g on M and con-
sider, instead of the Ricci flow, the Ricci-harmonic map flow system

d
%(Pt — Agt@@t

(1.5)
%gt = - QRCgt )

where ®; : M — M and Ay, 5 is the map Laplacian with the domain endowed with
the metric g; and the codomain endowed with g. In fact, don’t consider ([1.5)); consider
instead the system

d
7%t = R g e

‘ (1.6)
@gt = — 2Rcg, — ‘c(cpt—l)*%q)tgta

which is related to (1.5)) by g; = ®;g;. The system (1.6]) is strictly parabolic, and hence
admits a (unique) solution {(®¢, g¢) }+<(0,5) for a short time (which depends continuously
on go), thereby providing the desired Ricci flow {g: = ®di }1(0,6)- O

For a more in-depth discussion of de Turck’s argument, especially its relation to
the Bianchi identities, see [3].

1.5 The space-time formalism. A one-parameter family {g; }+c; of metrics t — g, €
D(T*M @ T*M) may (perhaps more properly) be viewed as a map (z,t) = g =
(9t)z € T*M @ T*M. This map may be exhibited as a section of a bundle over M x [
whose fibres are those of T*M ® T*M. Indeed, if we introduce the SPATIAL TANGENT
BUNDLE

S ={eT(MxI):dtE) =0}

of M x I, where here t : M x I — R denotes the projection onto the second factor,
then any (7,t) + g5 induces (canonically) a section g of &* ® &* (which we shall
refer to as a TIME-DEPENDENT METRIC). Similarly, the Ricci tensors Re; of the metrics
g¢ induce a section Rc of G&* ® &*. From this point of view, the Ricci flow equation
becomes

Ls,9 = —2Rc, (1.7)

where 0y is the canonical vector field on I. Indeed, since the flow of J; is ¢s(x,t) =
(z,t+s),

d . d d
Lo = 5 B (59 @) = 75 _ Jatrs) = 5 9t)a-
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This may seem like abstract nonsense (and it is), but it does have a more pragmatic
purpose: it naturally gives rise to the canonical (and very useful) SPACETIME CONNEC-
TION.

Proposition 1.3 (The spacetime connection). Given any metric g on the spatial tan-
gent bundle S of M x I there exists a unique connection V : T(M x I) x T'(&) - &
on & which is

(1) METRIC: for any U,V € I'(&) and £ € T(M x I),
0=Veg(U,V)=£Eg(U, V) —g(VeU, V) — g(U,VeV)
(2) SPATIALLY SYMMETRIC: for any U,V € I'(§),
VoV —VyU =[U, V],
and
(8) IRROTATIONAL: the tensor S € T'(6* ®@ &) defined by
S(V)=VV —[0,V]

18 g-self-adjoint.

Proof. Observe that the properties f)yield

0=0(g(U,V)) —g(ViU,V) —g(U,V,V)
=Ly g(U, V) —g(SU),V) —g(U,S(V))
= L4,9(U, V) =28(U,V),

and hence
S = %Eat g.
In particular, along a Ricci flow,
S = —Rec,
and hence, for any time dependent vector field V' € I'(&), we have the formula
ViV =10, V] —Re(V). (1.8)

Since T(M x I) = & & R, and the properties and ensure that V¢V satisfies
the Levi—Civita formula when £ € &, this completely determines V.

Conversely, the Levi-Civita formula combined with (1.8]) defines a connection on
S. O

In the sequel, when it is clear that we are working in the “time-dependent” setting,
we shall conflate & with TM and we will often use the data (M x I, g) (where g is a
spacetime metric satisfying ((1.7))) to denote a Ricci flow.

8



1. THE FUNDAMENTALS

1.6 Exercises.
Exercise 1.1. Show that the system ([1.2)) is weakly parabolic.

Exercise 1.2. Prove that the system (|1.2)) does indeed take the form (|1.3) in harmonic
coordinates.

Exercise 1.3. Show that the sectional curvature of a metric of the form
g = dr? +*(r,0)d6?
is given by
e
(G
Exercise 1.4. Consider metric on S? which takes the form
g = dr? +*(r)d6?

in spherical polar coordinates. Suppose that g satisfies

K:

1
Rc=g+ §£Vg
for some radial vector field V' = f(r)d,. Find f, and hence determine g.

Exercise 1.5. Show that the map V — S(V) of Proposition is indeed linear over
the ring of smooth functions and takes values in I'(&) (and hence induces a genuine
tensor field § € I'(6* ® &) as claimed).

Exercise 1.6. Equip the time-dependent Riemannian manifold (M™ x I, g) with its
spacetime connection V. Given (zg,tg) € M™ x I and sufficiently small ¢, define the
PARALLEL TRANSPORT maps 7. : 1, M" — T, M™ by

Te(u) =U(to +¢),
where, for each u € T,y M", t — U(t) € T,;,, M™ is the unique solution to

VU =0
U(to) =Uu.
a) Show that 7. is an isometry for each ¢.

(a)
(b) Show that d%‘ezo Te(U) = S(ag,t0) (W)
c¢) Deduce that the projection of %}e:o 7. onto s0(T,M™, g4,) vanishes.

(
(This justifies the term “irrotational” to describe the third defining property of the
spacetime connection.)






2. LONG TIME BEHAVIOUR

Lecture 2. Long time behaviour

2.1 The maximum principle. The maximum principle is a fundamental tool in the
analysis of parabolic partial differential equations, and the Ricci flow is no exception.
Indeed, in the context of Ricci flow, the maximum principle exhibits multiple useful
manifestations.

2.1.1 Mazimum principle for scalars.

Proposition 2.1. Let (M™ x [0,T),g) be a Ricci flow on a compact manifold M™.
Suppose that u € C°(M™ x (0,T)) N C°(M™ x [0,T)) satisfies

(O —A—=Vp—c)u<0

for some time-dependent vector field b and some locally bounded function ¢ : M™ x
[0,T) — R, where the Laplacian A is taken with respect to the spacetime metric induced
by g. If maxpn, oy u < 0, then

<0 ltel0,T]. 2.1
H0a% U < for a (0,77 (2.1)
If c =0, then
max uw= max u. (2.2)
M™x[0,T] Mnx{0}

Proof. Given ¢ > 0 and s € (0,T), consider u. s(z,t) = u(z,t) — eel*D where
C = maxynys ¢ We claim that ue s < 0 in M™ x [0, s]. Suppose, to the contrary,
that u. s(xo,t0) > 0 for some point (xo,tg) € M™ x [0,s]. Since u4(-,0) < 0, there
exists a positive earliest such time, which we take to be tg, in which case u(xg,ty). At
the point (zo, tp),

0<(0r—A—=Vp)ue,s <cu—e(C+ 1)e(C+1)t

= ee@*Vte — o(C + 1)elOHD!

< —eelCHt <,

which is absurd. We conclude that u. s < 0 in M"™ x [0,s]. But € > 0 and s € (0,7)
were arbitrary. Taking ¢ — 0 and then s — T yields the claim. U

Of course, the same argument applies with the inequalities reversed, leading to a
minimum principle.

The following ODE COMPARISON PRINCIPLE is an immediate consequence of the
maximum principle.

Proposition 2.2 (ODE comparison principle). Let (M™ x [0,T), g) be a Ricci flow on
a compact manifold M™. Suppose that u € C°(M™ x (0,T))NC°(M™ x [0,T)) satisfies

(Or — A —=Vy)u < F(u), (2.3)

for some time-dependent vector field b and some locally Lipschitz function F : R — R,
where the Laplacian A and covariant derivative V are taken with respect to the induced

11
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metric. If u < ¢o at t = 0 for some ¢g € R, then u(x,t) < ¢ (t) for all x € M™ and
0<t<T, where ¢ is the solution to the ODE

d¢ .
¢ (0) = ¢o.

Proof. Fix s € (0,7"). Since F is locally Lipschitz, there exists some L < oo such that
(0 = A =Vy)(u—¢) < F(u) - F(¢)
< Llu— ¢| = Lsign(u — ¢)(u — ¢)
in M™ x (0, s], where sign(u — ¢) is the sign of the expression u — ¢. The claim now

follows, within M™ x [0, s|, from Theorem Taking s — T completes the proof. [

Again, one can reverse the inequalities to obtain the corresponding ODE comparison
from below.

The strong maximum principle also passes to the geometric setting.

Proposition 2.3. Let (M™ x (0,T),g) be a Ricci flow on a connected manifold M™.
Suppose that uw € C°(M"™ x (0,T)) is non-positive and satisfies

(O—A=Vpy—0cu<0 (2.5)

for some time-dependent vector field b and some function ¢ : M™x(0,T) — R, where the
Laplacian A and covariant derivative V are taken with respect to the induced metric. If
u(zg, to) = 0 for some (xg,to) € M™x(0,T), thenu(z,t) = 0 for all (x,t) € M"™x(0, o).

Proof. In local coordinates {z* »_, for a connected coordinate patch U C M™ about
g, u satisfies

dru < gy + (08 + ¢T3 )y, + cu.
The classical strong maximum principle then implies that v = 0 in U x (0,¢g]. Since
M™ is connected, the claim follows from a standard ‘open-closed’ argument. ]

2.1.2 A mazximum principle for symmetric bilinear forms. Hamilton [23] discovered the
following beautiful maximum principle for symmetric bilinear forms.

Proposition 2.4 (Tensor maximum principle). Let g be a time-dependent metric on
a compact manifold M™. Suppose that S € T'(T*M"™ © T*M™) satisfies

(Vi = A =Vp)Sgpy(v,v) 2 F(x,t,S40)(v,v) for all (x,t,v) € TM"

for some time-dependent vector field b € T'(T M) and some time-dependent vertical
section F' of w*(T*M™ © T*M™) which is Lipschitz in the fibre and satisfies the NULL
EIGENVECTOR CONDITION:

F(x,t,Tz4))(v,v) > 0 whenever T(,4(v) =0.
If Sz0) 2 0 for all x € M™, then S(;4) > 0 for all (z,t) € M™ x [0,T).
12
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Proof. Fix ¢ > 0 and o € (0,7). We claim that the tensor

5§50 = § 4 gelCotlty
is positive definite in M" x [0, o], where Cy = maxym 9,0 Lip F'(2, y, -). By hypothesis,
S(EJ’CUO) > ( for all x € M™. So suppose, contrary to the claim, that there exist xg € M™,
to € (0,0] and Vy € Ty M™ \ {0} such that S;%, > 0 for each (z,t) € M"™ x [0,y) but

(z,t)
So7  (Vo, Vo) = 0. Extend Vj locally in space by solving

(wo,to)
V'Y/V =0
along radial g¢4,-geodesics 7 emanating from xy and then extend the resulting local
vector field in the time direction by solving
VtV =0.

Then VV (xg,t9) = 0 and V;V (x,t9) = 0. We claim that we also have AV (zg,tg) = 0.
To see this, let {e;}I" ; be an orthonormal frame at zy and parallel translate it along
geodesics emanating from xg, all of this respect to g;,. We then may compute using
e; = v, along v; with 7/(0) = e; that

n

AV (@0.t0) = 3 (Ve(VeV) = V9.6V (w0,t0) = 0.
i=1

Now set
SE,O'(l" t) = Sairt) (‘/Y(a:,t)7 Vv(ac,t))
for (x,t) near (xo,tp). Then s ,(x,t) > 0 for (z,t) in a small parabolic neighborhood
By (o, to) x (to — 2, t0] of (zo,tp) and se 5 (w0, to) = 0, and hence
0 > (815 — A — Vb)sag\(xo’to)

= (Vt - A - vb)S€7U‘($0,to)(‘/07 ‘/b)

> F (20,0, Sag.t0)) (Vo Vo) + (Co + 1)el g 1y (Vo, Vo)

> F(z0,t0,5.7 , ) (Vo, Vo) — Cy (S(Eg;:z,to) - S(mo,to))(vo’ Vo)

(zo,t0)
+ 5(00 + 1)e(co+l)tg(xo,to) (va Vb)
2 Ee(ca—’_l)tog(xo,t())(‘/oa ‘/0)
>0,

which is absurd. So S indeed remains positive definite in [0,0]. The claim follows
since € > 0 and o € (0,T) are arbitrary. O

2.1.8 A maximum principle for sections of vector bundles. There is even a version of
the maximum principle for sections of a vector bundle.

Proposition 2.5 (Vector bundle maximum principle). Let 7 : E — M"™ x [0,T) be
a time-dependent vector bundle over a compact manifold M™ which is equipped with
a metric h and a metric connection V, and let Q@ C E be a closed subset which is
CONVEX IN THE FIBRE and INVARIANT UNDER PARALLEL TRANSPORT. GGiven any

13
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time-dependent vector field b on M"™ and any TIME-DEPENDENT VERTICAL VECTOR
FIELD F' € I'(n*E — E) which POINTS INTO €, any solution u € I'(E) to

(Vi— A —=Vy)u=F(u)
satisfying u(z,0) € Q for allx € M satisfies u(x,t) € Q for allz € M and allt € [0,T).

The conditions of Proposition are intuitive enough: a subset Q of the (time-
dependent) vector bundle 7 : M x [0,7) — E is CONVEX IN THE FIBRE if its fibres
Qg = QN Ey) are convex subsets of F(, ), and INVARIANT UNDER PARALLEL
TRANSPORT if parallel translates (with respect to the relevant connection) of vectors
in © along curves in M x [0,7) remain in §2; a vertical vector field F' € I'(7*E) POINTS
INTO Q AT (z,t,v) € OQif (z,t,v) +eF(x,t,v) € Q for all small ¢ > 0 (where addition
is is understood fibrewise).

The proof of Proposition [2.5] uses tools from convex geometry, but is very similar
in nature to that of Proposition (see e.g. [3]); we omit it for the sake of brevity.

2.2 Evolution of geometry under Ricci flow. The Ricci flow equation induces
diffusion equations of various types for the various geometric features of the evolving
metric.

2.2.1 Distance distortion estimates. Let (M x I,g) be a Ricci flow. Given any curve
v:[0,L] - M in M,

ilen th(y) = d/L\ '(s)| ds
at E =g ),
d g / /
=), V9(y'(s),7'(s)) ds
L / /
(e 2O,
0 V(&I 1 ()]
Thus, the Ricci curvature determines the rate of change of lengths of curves. Ap-

plying this at minimizing geodesics yields the following elementary distance distortion
estimates.

Proposition 2.6. If Kg < Rc < Kg along a complete Ricci flow (M x [t1,ts],g), then
d _
K dist(x,y,t) < % dist(z,y,t) < K dist(z,y,t)

in the (forward and backward, respectively) barrier sense, and in the classical sense
almost everywhere. Furthermore,

~K(ta—t1) < dist(z, y, t2) < o—Kl(ta—t1)

¢ ~ dist(z,y,t1)

Proof. Given any two distinct points xz,y € M and any time tg € [t1, 2], we can find
a distance minimizing geodesic v : [0, L] — M with respect to the metric at time ¢
which joins x and y. We may assume that  is parametrized by arclength, so that the

14



2. LONG TIME BEHAVIOUR

distance d(x,y,tp) between x and y with respect to the metric at time #y is equal to L.
By the above computation and the hypotheses,

d _
K length(y) < 7 length(y) < K length(v).

Since length(v) > d(z,y, -) with equality at time t = ¢y, we have found a (forward resp.
backward) barrier satisfying the inequalities. The a.e. classical inequality then follows
because ¢t — dist(z,y,t) is Lipschitz (and hence admits a classical derivative at a.e.
time, which must be equal to that of the barrier because of the first order contact).
We may then integrate to obtain the distance distortion estimates. O

These estimates are quite crude. The following argument (inspired by the proof of
the Bonnet—Meyers theorem) provides a much sharper estimate on long geodesics.

Proposition 2.7. If Re < (n — 1)Kg for some K > 0 along a complete Ricci flow
(M x [t1,t2], g), then
d
% dist(z,y,t) < 10K 2
in the (forward and backward, respectively) barrier sense, and in the classical sense
almost everywhere. Thus,

dist(z,y,t2) > dist(z,y,t1) — 10K%(t2 —t1)

Proof. Given any two distinct points x,y € M and any time ¢y € [t1,t2], we can find
a distance minimizing geodesic 7 : [0, L] — M with respect to the metric at time ¢
which joins  and y. We may assume that v is parametrized by arclength, so that the
distance d(zx,y,ty) between x and y with respect to the metric at time ¢y is equal to L.
By the above computation and the hypotheses,

—% length(vy,t) < K length(~,t) .

In case L < 2K_%, we have

N

d 1
—glength(’y,t) <2K2 < 10K

at t = t9. The interesting case is L > 2K 2. Choose a parallel orthonormal frame
{E;}", along v such that E; = 4/ and let ¢ : [0,L] — R be a smooth function
satisfying

1
0<¢=<1, @l ki PP <4K>.

For i = 2,...,n, the second variation formula for length yields
L
0< [V - Ran(e/, i’ o] ds
0
L
= / [|90,|2 - ()02Rm(/y,7 Ei,’Y/7Ei)] ds
0

15
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at t = tg, since v is minimizing at ¢ = ¢y. Tracing, we obtain

L
0< /0 [(n— D)@' — ¢PRe(y')] ds.

Thus,
L L
/ Re(y/,7) ds = / (g02RC("}//,")/> +(1— <p2)Rc(7’,7’)) ds
0 0
L
<=1 [ (¥P+ - ¢?)K) ds
0
—m-D [ (WP DE) ds
[0,K™2]U[d—K ™ 2,d]
<10(n—1)K=.
The claims now follow as before. ]

2.2.2 The first variation of volume. Recall that, on any Riemannian manifold (M", g),
the Riemannian measure of any compact subset K C M is defined by

volume(K, g) = / dp = Z/ (z21)* (par/det ga) d,
K o Yza(Ua)

where {(Uy, Za) }a is any locally finite covering of K, {pq }« is any subordinate partition
of unity, dx is the Lebesgue measure on R”, and g, is the component matrix of g induced
by the a-th chart. If {gc}.c(—c),c0) s @ one-parameter family of metrics on M™ with

go = g and d% oY = h, then, with respect to any coordinate chart,

de | ._g

We thus obtain the FIRST VARIATION FORMULA:

d 1
volume (K, g.) = —/ trg hdp .
2 /K

V/det g. = %\/detgtrgh.

de

e=0
In particular,

Proposition 2.8. along a Ricci flow (M x 1,g),

d
— volume(K, ) = —/ Rdu
dt .

for any compact K C M, where volume(K,t) = volume(K, g¢).

2.2.8 Evolution of the Ricci and scalar curvatures. Given a Ricci flow {g; }+er, applying
Lemma to the one parameter family {g7 = g¢te }t4eer of time translated Ricci flows
yields

d

$RCU = g™ (ViVReij + ViV,Rere — VoV Rei — Vi ViRejr)
= ARcjj + Qij

16



2. LONG TIME BEHAVIOUR

where
Qij = gM (ViVjRCkg — VijRCig — vkviRCﬂ)
= gkﬂgpq (viijmkpéq - vkijmipéq — VkViijpgq) .

We can write this in a more natural way by applying the Bianchi identities and making
use of the space-time connection.

Proposition 2.9. Along a Ricci flow (M™ x I,g),
(Vi — A)Re = Q(Re), (2.6)
where, with respect to any local basts,
Q(Rc)ij = 2RmikngcM.
Proof. The second Bianchi identity and the definition and symmetries of curvature
yield
" gP IV Rilgpeg = — g™ 9" (ViViRmpje, + ViVyRimigg)
= — g"gP (V;ViRmyje, + Vi ViRm;pg0)
= — 26" ¢PV,;V Rimyjeq
= - QQMQW (ViViRmyjeg + (Rmg;Rm)p;e)
= 29" g" (ViViRmjpeg + (RmipRm)pjeq)
The second and first Bianchi identities then yield
Qij = ¢" 9" (2(RmgRm)pjeq + ViViRMprg — ViV Riipeg)
= g™ g"? (2(Rm;Rm) jeg — Vi VpRm;jeq)
= g™ gP? (2(RmiRm)jeg + Vi VpRmigie — ViV,Rmie)
= — 29" (RmirRe)je + 6" " (Vi VRmigje — VpViRmygj0)
= 2Rm7;kngcM — QRCZZJ- + gkegpq(Rmkam)iqjg .
Observe thatfl
gkegpq(Rmkam)iqje = - gkegp 1gm™ (RmpkimRmnqu + Rmpkqummjé
+Rmyppjrm RMygne + Rmyppen Rmigjn)
= g™ gP1g™" (RmppimRinygi0 — RMypypiq Rk jim
RmypgprRmip e — Rmyprsm Rmig i)
=0.
So the claim follows upon applying the identity

d
- . 2
ViReij = - Reyj + 2Re 0
5There is an easier way to see that this term vanishes: since the terms Q;; = (% — A)Rc;; and

2(Rm;xRm)pjeq = 2RmikﬂRck[ — 2Rc?j are symmetric, so must be the remainder, g**gP4(VV,;Rm,peq —
Vi V;jRmpeq). But this term is clearly skew-symmetric.

17
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Taking the trace of (2.6]), we find that
Corollary 2.10. along a Ricci flow (M™ x I,g),

(9 — A)R = 2|Ref?.

(2.7)

Applying the maximum principle to these equations yields useful information about

the behaviour of curvature under Ricci flow.

Proposition 2.11 (Scalar curvature tends towards positive). Let {g:}ic(a.w) be a Ricci

flow on a compact manifold M.

(1) If minpsy oy R =0 then either Re =0 or R > 0 fort € (o, w).

(2) If miny/, oy R = r=2>0, thenw < a+ 2r? and

mR>
ity 2= 2(t— a)

fort e (a,w).

(3) If minpsy oy R = —r~2 <0, then

mR>__ -
MH>1<1{I}f} T 24+ 2(t-o)

forte (a,w).

Proof. In the first case, the maximum principle ensures that R remains non-negative
due to (2.7). The strong maximum principle then guarantees that either R > 0 at

interior times, or R = 0. But in the latter case, (2.7) implies |[Rc| =0.

Since
Rel®> > L1R?,
we may estimate
R > AR + 2R?.

The ODE comparison principle then yields the remaining claims.

0

Proposition [2.11] tells us two important facts. First, a Ricci flow with positive scalar
curvature on a compact manifold must become singular in finite time. Second if a Ricci
flow on a compact manifold happens to exist on a very large time interval, then the
scalar curvature is almost non-negative at the end time. In particular, if the flow has

an infinite past, then the scalar curvature is non-negative in the present.

Corollary 2.12. For any ANCIENT Ricci flow (M™ x (—oo,w), g) on a compact man-

ifold M™, either R > 0 or Rc = 0.
18



2. LONG TIME BEHAVIOUR

2.2.4 Evolution of the curvature operator. It is also possible to derive an evolution
equation for the full curvature tensor Rm.

Proposition 2.13. Along a Ricci flow (M™ x I,g),
(V¢ — A)Rm = Rm? + Rm* (2.8)
where, as operators on vector fields,
Rm?(X,Y) = trRm(Rm(X,Y)-, )
and
Rm#(X,Y) = 2tr [Rm(X,-),Rm(Y, )],
or, with respect to a local orthonormal frame,
Rm?jkz( = RmjjpeRmggpq
and
Rmﬁke = 2(RmjprgRmjjprg — RmipeqRmyprg) -
Proof. The identity may be derived, with some effort, as an application of the
curvature identity
Rm(0;, X,Y,Z) = VyRe(Z,X) — VzRe(Y, X)
and the second Bianchi identity
Vi(Rm(X,Y)) = Vx(Rm(9;,Y)) — Vy (Rm(9, X))
for the spacetime connection, whose proofs we shall omit. (See e.g. |3}[15,16].) O
The terms on the right hand side of have a natural algebraic interpretation.
Indeed, the term Rm? is at each point the square of Rm as an endomorphism of

A%(TM), while Rm# is the “Lie algebra square” of Rm (where at each point A?(TM)
is identified with so(n)). Le.

Rm? = ad oRm A Rm o ad*

where
ad : A%(so(n)) — so(n)

is the adjoint representation.

2.3 Global-in-space Bernstein estimates and long time existence.
The evolution equation for Rm immediately yields an evolution equation for [Rm|?:
(9 — A)Rm|? = 2¢((V¢ — A)Rm, Rm) — 2|VRm|?
= 2g(Rm? + Rm* , Rm) — 2|VRm|?.
The first term is formed from the metric contraction of a linear combination of terms

which are cubic tensor products of Rm. In particular, by Young’s inequality, we may
estimate 2g(Rm? + Rm*, Rm) < C|Rm|?, where the constant C' depends only on n.

Let us denote by S * T any tensor which is a linear combination of metric contrac-
tions of the tensor product of S and 7' (of the same type).

19
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Lemma 2.14. Along a Ricci flow (M™ x 1,g),
Vi — A, VT =Rm VT + VRm « T.

From this, we find that
(0 — A)|VRm|*> = 2¢((Vs — A)VRm, VRm) — 2|V?Rm/?
=29(V(Vy — A)Rm + Rm * VRm 4+ VRm * Rm, VRm) — 2|V*Rm|?
= Rm * VRm * VRm — 2|V?Rm|*.
If |Rm| remains bounded on the time interval [0, 7], then we can estimate
(9 — A)|VRm|* < C|VRm/?,

where C depends only on n and the bound for |[Rm|. The ODE comparison principle
then implies that |[VRm|? grows at most exponentially on [0, T':

|[VRm|? < max |VRm|?e¢T .

This estimate takes a more natural form if we exploit its scale invariance: since |Rm)|
scales (under parabolic rescaling of our Ricci flow) like the inverse square of distance,
whereas t scales as distance squared, the constant CT will be scale invariant. If we
introduce the scale parameter r = /T and assume that |Rm| < Kr~2 for t € [0,7%] (a
scale-invarant assumption), then the estimate becomes

IVRm|? < C} max |IVRm|?,

where C] depends only on K and n.

We can also obtain a time-interior version of this estimate: consider, for some
to-be-determined constant a, the combination

Q = 2t|VRm|? + a|Rm|? .
Observe that
(0 — A)Q = 2|VRm|* 4 2¢(8; — A)|VRm|? + a(d; — A)|Rm|*

< 2|VRm|? 4 2¢tC;|[Rm||VRm|? 4 a(Co|Rm|* — 2| VRm|?)

= 2(1 + C1t|Rm| — a)|VRm|? + aCo|Rm|>.
If we know that |Rm| is bounded by Kr~2 on M x [0,72], then

(0 — A)Q < 2(1 4 C1K — a)|VRm|* 4 aCo K36
Thus, if we choose a = 1+ C1 K, then the ODE comparison principle yields
tlIVRm|*> < Q < max Q + aCoK3r=%t < aK?*(1 4+ CoK)r*.

That is,
-2

Dr
VRm| < ,
[VRm| < N

20
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where D? = aK?(1 + CpK). This is another manifestation of the diffusive nature of
the Ricci flow: even if the curvature is arbitrarily rough at the initial time, it becomes
much more regular only a short time later.

An inductive extension of this argument yields the following estimates.

Theorem 2.15 ((Global-in-space) Bernstein estimates). For every n € N, K < oo
and m € N, there exists Cy, < oo with the following property. Let (M™ x [0,T), g) be a
Ricci flow on a compact manifold M™. If

[Rm, 4| < Kr=2 for all (x,t) € M™ x [0,7‘2],

then
IV"Rm, | < Oy max [V"Rm| for all (z,t) € M"™ x [0,7%]
’ M x{0}

and

Cyar2
V™R, 4| < t; for all (z,t) € M™ x [0,r%].

A fundamental application of the global-in-space-Bernstein estimates is the follow-
ing characterization of finite time singularities.

Theorem 2.16 (Long time existence). Let (M™ x [0,T),g) be a MAXIMAL Ricci flow
on a compact manifold M™. (Le. there is no Ricci flow (M™ x [0,T"),q") with T > T
such that gém,t) = Yoy for allt <T). If T < oo, then
limsup max |[Rm| = oo.
t—T Mx{t}
Sketch. Let (M™ x [0,T),g) with T < oo be a maximal Ricci flow on a compact
manifold M™ and suppose, contrary to the claim, that

IRm| < K on M" x[0,T).

By the Bernstein estimates, we also have bounds on M™ x [0,T) for V"Rm for all m.
These geometric estimates can be converted, by an inductive argument, to estimates
in C* for the metric coefficients in any local coordinate chart. The only subtlety is the
k =0 and k = 1 cases; to control these terms, we observe that, for any x € M"™ and
any v € T, M™,

<C.

d 2Re (g (v, v)
—lo =) (Vv —_—
&8 90 )| = |76

Integrating, we find that g(, ;) remains uniformly equivalent to g, o) under the evolu-
tion. (The first derivatives are then bounded due to the interpolation inequality.)

Cover M" by finitely many compact sets K, which each lie to the interior of some
coordinate chart ¢, : U, — R". The Arzeld—Ascoli theorem now implies that, for any
sequence of times ¢; — 7', we can find, for each compact set K, a subsequence of times
such that the metric coefficients in the the chart ¢, converge uniformly on K, in the
smooth topology to some limit. Taking appropriate subsequences, we can find limits
along the same sequence of times which agree on overlaps. These limits thus define a
global smooth metric on M", which we now evolve by the Ricci flow using our short
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time existence theorem. The so extended family of metrics is smooth at each time
and it is also smooth in time across the jump time 7" since time derivatives of g are
related to spatial derivatives by the Ricci flow equation. But this is impossible since
our original Ricci flow was assumed to be maximal. O

Proposition 2.17. Let (M™ x [0,T),g) be the mazimal Ricci flow of a compact Rie-
mannian manifold (M™, go). If T < oo, then

Rm| > ——
pna [Rm| 2 77—

where C' depends only on n.

Proof. Since limsup; »p max ) [Rm| = oo and
(9 — A)Rml* < e(n)[Rm]?,

the claim follows from the ODE comparison principle. U

2.4 Local-in-space Bernstein estimates and the compactness theorem. By in-
troducing spatial cutoff functions into the above argument, one may derive the following
local-in-space estimates.

Theorem 2.18 (Fully local Bernstein estimates). For every n € N, K < oo and
m € N, there exists Cy, < oo with the following property. Let (M™ x I,g) be a Ricci
flow on a manifold M™. If B.(z,t) has compact closure in M", [t —r?,t] C I and
SUPB, (z,6)x[t—r2,4 [RM| < Kr=2, then

V"R | < Cppr™™ 2.

Combining these estimates with the Cheeger—-Gromov compactness theorem for Rie-
mannian manifolds with bounded geometry yields the following compactness theorem
for Ricci flows under modest geometric assumptions.

Theorem 2.19 (Compactness of the space of Ricci flows with bounded geometry).
Let {(My, x I, ok, gk) }ken be a sequence of pointed Ricci fows. Suppose the following
conditions hold

(1) By(og, ) @ My, and I = [a,w] C I, for all k.
(2) maxg (,, q)x; Bm| < C < oo forall k.
(3) inj(og, ) >0 >0 for all k.

There exists a pointed Ricci flow (M x I,0,g) such that, after passing to a subsequence,

the Ricci flows (B% (o, ) X I, 0, gr) converge uniformly in the smooth sense to the
Ricci flow (B% (0,0) x I,0,g). That is, there exists a sequence of diffeomorphisms

¢ ¢ Br (0,0) = My, with ¢i(0) = oy such that ¢jgr — g uniformly in the smooth
topology, where (P}9k)(zt) = (9k) (¢ (2).t)-
22
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By taking limits along diagonal subsequences, one can obtain a complete limit under
global bounds on the curvature. Note though that the limit can lose or gain topology,
and different subsequences can take different limits. Compact limits are better behaved,
however (as in this case the convergence is necessarily uniform).

2.5 Perelman’s curvature estimate. By Klingenberg’s lemma, lower injectivity ra-
dius bounds are equivalent to lower volume bounds under the assumption of bounded
curvature.

Proposition 2.20. Given k > 0 and K < oo, there exists § > 0 with the following
property. Let (M", g) be a Riemannian manifold. If

(1) Supp, (z,) [Rm| < Kr=2 and

(2) volume(B;(x¢)) > kr",

then
inj(zg) > or.

Proof. See e.g. [15,16]. O

So the lower injectivity radius bound in the compactness theorem may be replaced
by lower volume bounds for geodesic balls.

On the other hand, if the volume of a geodesic ball is bounded from below for some
time under Ricci flow, then the curvature at the centre is bounded from above.

Theorem 2.21 (Perelman’s curvature estimate [36]). For any n > 2 and any k > 0,
there exists C' < oo with the following property. Let (M™x 1, g) be a Ricci flow. Suppose
that B.(x,t) x (t —r?,t] € M™ x I. If
Rm > —r~2g in By(x,t) x (t —r?,t] and volume(B,(z,t),t) > rkr",
then
\Rm(x,t)\ S CT'_2 .

Sketch. Suppose, to the contrary, that we can find £ > 0, a sequence {(Mj' <1}, g;)} jen
of Ricci flows (Mj” x I;,g;) containing points (x;,t;) € M7 x I, and a sequence of
scales r; such that

Rm; > —r{ng in By, (wj,t5) x (t; — sz,tj] and volume(B,,(z;,t;),t;) > krY
but

[(Rmy) (g, 00| > 577572

Set Qj(w,t) = |(Rm;)(4)|- We claim that points (Z;,;) € M}' x I; can be found with
the following properties (see Lemma below):

— 7 452
(1) (7),t5) € B%(%’»ty’) X (tj — greigtil

RGEs Q5 (xt5)
(2) Qj(T),t5) = Qj(zj, t5).
: (T E) (F Es 7323
(3) Qj <2Q;(z;,1;) in Biczj@]j,?j)(x]’tj) x (t; Q?(fjij)t]]'
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Set 7; = Qj_l(fj,fj). After parabolically rescaling by Fj_l, we obtain a sequence of
pointed Ricci in flows with curvature bounded by two on B;(%;,0) x (—j2,0] and
volume(B;(z;,0),0) > k. By the compactness theorem (Theorem [2.19)), a subsequence
converges to a complete ancient Ricci flow with non-negative curvature operator and

curvature bounded from above by two, which has positive asymptotic volume ratio,
volume(B; (%o, 0),0)

V( c?o? gO) = rn >0.
It turns out that this final condition is incompatible with the others. (See Theorem
in Lecture[6]) O

In the proof of Theorem [2.21] we used the following “point picking” trick.

Lemma 2.22 (Point picking lemma). Let (M™ x I,g) be a Ricci flow and f : M™ x
I — (0,00) a continuous function. Giwen (x,t) € M™ x I and any d > 0 such that
B_ 24 (z,t) x (t— {Bi t) € M™ x I there exists (y,5) € B_ 24 (x,1) x (t — AL 1)

CD] f(zt) VieD fzt)
such that f(y7 S) 2 f(fL’,t) and f S 4f(y7 8) in Bif?y,s) (y7 S) X (S - f(dy7s)78)'

Proof. Set (yo,s0) = (z,t). If (y,s) = (yo,s0) satisfies the conclusion, we are done.

Else there exists (y1,s1) € (B_a__ (x,t) % t—i,t such that f(y1,s1) > 4f(yo,0).
(.)€ (B_o_(2.0)x (¢ g (1.51) > 4£ (30, 50)

If (y1, s1) satisfies the conclusion, we’re done. Else, we continue choosing points (y;, s;)
in the same way. Since the radii form a geometric series, the points (y;,s;) never

leave the ball B_ 2a  (z,t) % (t — f‘(l%i),t). Since f admits some finite bound within
Vi@t ’

B 21 (x,t) x (t— f‘(l%i), t), the process must terminate after finitely many steps. O
V() ’

While the estimates for derivatives of curvature (under the assumption of bounded
curvature) rely entirely on the maxiumum principle, inspired by a classical argument
of Bernstein, the estimate of Theorem [2.21] requires a number of new ideas. We will
touch on these ideas in Lecture [B

2.6 Exercises.

Exercise 2.1. Let (M",g) be a Riemannian manifold equipped with its Levi-Civita
connection V. Assuming f € C?(M") attains a local maximum at xo € M", show that

0=Vf(xg) and V2f(x) <O0.

Exercise 2.2. Show that any ETERNAL Ricci flow (M"™ x (—o00,00),g) on a compact
manifold M™ is Ricci flat.
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Lecture 3. Pinching estimates and their applications

We have seen that positivity of scalar curvature is preserved under the Ricci flow,
by applying the (scalar) maximum principle to the reaction-diffusion equation for the
scalar curvature. The reaction terms in the evolution equation for the Riemann tensor
enjoy a far richer algebraic structure. Understanding this structure (in relation to the
tensor and vector bundle maximum principles) is a crucial step in understanding the
long term behaviour of the Ricci flow. We will explore this paradigm in this lecture.

3.1 Three-manifolds with positive Ricci curvature. In three dimensions, the
trace-free part of the Riemann curvature tensor (the Weyl tensor) vanishes, so the
curvature is entirely determined by the Ricci tensor. In particular, the inequality
Rc > 0 implies the inequality Rm > 0.

Proposition 3.1. Let (M" x [0,T),g) be Ricci flow on a compact three manifold M?>.
If Refg=o > 0, then either

(1) Rc >0 for allt > 0,

(2) (M?,g) is flat, or

(3) (M3 x I,g) is an isometric quotient of (S?> x R x I,h + dr?) for some two-
dimensional Ricci flow (S? x I,h).

Proof. Recall that
(Vt — A)Rcij = RmikngCM .
With the tensor maximum principle in mind, consider, for any non-negative definite

symmetric two-tensor .S, the reaction term N(5);; = Rmikﬂskf. Given any null eigen-
vector v of S, we have

N(S)(v,v) = RmjpjpS*v07 > 0.

So the tensor maximum principle implies that Rc > 0. In fact, the strong maximum
principle implies that either Rc > 0 or

min Re(v,v) =0,
lv|=1

and hence Rc admits a null eigenvectorfield v (at every point). Now, starting at some
point (z,t), parallel transport v along radial geodesics to form a vector field, and then
extend this vector field in time to form a time dependent vector field V' by solving
VV = 0. Note that this vectorfield will satisfy VV = 0 and AV = 0 at the point
(z,t). Thus, since Re(V, V) > 0 with equality at (x,t), we find at (z,t) that

VRe(V, V) = V(Re(V,V)) =0,
ARc(V, V) = A(Re(V,V)) >0,
and
0= 0 (Re(V,V)) = ViRe(V, V) = ARe(V, V) + Q(Rc),
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and hence both terms on the right (being each non-negative) must vanish. In an
eigenframe {ey, ez, e3} for Re at (z,t) with e; = v,
0 = Q(Re) = sec(ei A ej)pip; = (pi + pj — 5R)pipy = (3 — p2)°,

and hence py = p3. So Rc has eigenvalues {0, p(z,t), p(x,t)} at each point (z,t). If
p vanishes at some (z,t), then so does R, and the strong maximum principle implies
that 2p = R = 0, and hence Rc = 0. So we may assume that p > 0 everywhere. This
guarantees that there is a smooth null eigenvector field, U. Computing as above, we
find that

0 > Re(VU,VU) = p*|VU|?
and hence U is parallel in space. It then follows that
ARc(U) =0
and hence
Re([0:, U]) = Re(VU) = Vi(Re(U)) — ViRe(U) = 0.

The claim now follows from the Frobenius theorem (consider the distribution U =
ker Re). O

Proposition 3.2. Let (M™ x [0,T),g) be Ricci flow on a compact three manifold M?>
with positive Ricci curvature.

1
in iR —— < )
B 3 S o <

Proof. Since Rc > 0, we may estimate |Rc|?> < R?, and hence
ZR? < (0, — A)R < 2R%.

Since limsup,_,7 maxys, ;) R = 0o, the ODE comparison principle yields the claims.
O

Proposition 3.3 (Pinching is preserved). Let (M3 x [0,T),g) be a Ricci flow on a
compact manifold M3 such that Rc > 0 at the initial time. There exists o > 0 such
that

Rc>aRg >0

at all times.

Proof. Since M? is compact and Rc > 0, a constant o > 0 may be found such that
the inequality holds at the initial time. Given such a constant, consider the tensor
S = Rc — aRg. Observe that

(Vt — A)SU = (Vt - A)RCZ‘j — a(&t — A)Rgij
= 2Rmy,;eRc™ — 2a|Re|?g;; .
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If v is a null eigenvector of S, then v is an eigenvector of Rc with eigenvalue p; = aR.
Consider an orthonormal basis {e; = v, es, e3} which diagonalizes Rc. With respect to
this basis,

(RmikngcM — a|Rc|2gij> vvj = (Rmyg1e — aReyy) Rck

= (Ulk — ap) P

= —api+ (012 — ap2)p2 + (013 — ap3)ps
where 0;; = sec(e; A ej) (= pi + p; — 3R). Since
o12 —apy + 013 —apy = p1 — a(p2 + p3) = a(R — p2 — p3) = ap1 >0,
we have
max{oi2 — apz, 013 — apz} >0

and hence

(012 — ap2)p2 + (013 — ap3)p3 > ((012 —aps) + (013 — Oép3)) min{pa, p3}
= apymin{ps, p3}
> api.

So the claim follows from the tensor maximum principle. O

Proposition 3.4 (Pinching improves). Let (M3 x[0,T), g) be a Ricci flow on a compact
manifold M? such that Rc > 0 at the initial time. For everye > 0, there exists C. < 0o
such that

|Rc|? < eR? + C.

at all times.

> |2
Proof. Given o, consider the function Rg%. We aim to show, using the maximum
principle, that an initial upper bound for this function is preserved, for some o > 0
(which will depend on the preserved pinching constant «). The claim then follows from
Young’s inequality.
First observe that
|Re|”

C2
@ - 25 — (9, — a)R

2 R2
=2g ((Vt — A)I;C,RRC> -2 ‘VI;C 2
— 2 (W (- A)Rf‘{g +2V%%, I;:) —9 ‘VI;{C 2
N L=
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Thus,
s (Rg |II{{C|2> =R%(@ - 4) |P;;C2|2 + @2 (9 — A)R7 — 29 (vw,v'}li‘;‘Q)
—R7(8; — A) !P;{CP . R{,\f;cy? {( —RA)R (1o ,VR};T
—20R%g ( R v‘i{:;)
=R’ 4Rm"WRZCijRckZ +2U|R°<32|2 |Re|? _4|R(;|4
R R> R R
+2(1 - 0)Ver ’PE{ZP 2 ‘VP;{C +o(l— o) |f]i(32\2 VRPEQ
Since
we arrive at
(&~ A) (R"“;C'j R 4Rmfikﬂ§2€“RC“ N 20|1§{C2|2 \RPEP B 4\RRc314
—2 ‘VII{: . o(1—0) |f§:2|2 WRI;P
+2(1-0)Vsn (Ra @2)

where iy

RmyyjeRe" Rck |Rc|*
R -~ RY

Observe that, with respect to an eigenframe for Rc,

Z =

RRmikngCinCM _ \RC]4 = Z Rsec(e; A ex)pipr — <Z P?)

2
=Y R(pi + pr — R)pipk — (Z P?)
i#k i

By Exercise this expression is non-positive, with equality only if at least one of

the eigenvalues is zero. It follows that the homogeneous expression Z (as an algebraic
function of the Ricci eigenvalues) takes a negative maximum, —(,,, on the cone described
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by the condition Rc > aR. Since |Rc| < |[Re| < R on the positive cone, we may take o
to be twice (, to obtain

[Re|? [Ref?
(at — A) <RJR? S 2(1 - U)V% RO—? 5
at which point the claim follows from the maximum principle. O
Proposition ensures that the metric is becoming round at any point where
the curvature is becoming large, in the sense that the scale invariant ratio |[Rc|/R is

becoming small. We already know that maxR > ﬁ is blowing up at the final

time. We thus need to show that min R blows up at the same rate. We will be able to
establish this from the following gradient estimate in conjunction with Myers’ theorem.

Proposition 3.5. Let (M3 x[0,T),g) be a Ricci flow on a compact manifold M?> such
that Rc > aR at the initial time. For any € > 0, there exists Cz < oo such that

|VRc|? < eR?® + C.

at all times.

Proof. Recall that

(0r — A)|VRc|? < ¢|Re||VRe|? — 2|V*Re|?.
Given € > 0, choose C; (as permitted by Proposition so that

|Re|? < eR? + C.
and consider, for suitable C. < 0o, the function
G. =2C. 4+ ¢R? - \Pic[Q >C.>0.
Estimating Z > 0, |Rec| < R, and (see Exercise |VRc|? > 2—70]VR\2, we find that
(0 — A)G: = 4((} +¢) R|Rc|* = Rm(Re, Re)) + 2(|VRe|? — (3 +¢) |[VR|?)
[Ref?
R

>4 (Ge — 2C:) + K|VRc|?

> — 4|Rc|G. + K| VRc|?,

.1 1
where k = 50"

57, say, so long as € <

We aim to preserve upper bounds for the function %%Cf. So consider
(@ — A) |VRC|2 B (0 — A)|VRC|2 B |VRC|2 (0 — AR _ (0 — A)G.
t RG. RG. RG. R G.
\VRC[Q |VRC|2 VR VG,
29 ( V Vlog(RG 2 —_— .
+ 9( RG. v 108(RGE) |+ 2 m9 (R
We estimate the terms on the first line as above. To control the terms on the second

2
line, observe that, at a new local maximum of 7‘%}5‘ ;
g

IVRc[2  _g(ViVRc,VRc) |VRef? (ViR = ViGe
=V, =2 - +

0
RGe RG. RG. R G-
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and hence
2 2 2 2R |2
4\VRC\ g @’ VG, < |VR¢| VR N VG, < 4]V Rc|
RG. R’ G, RG: | R G, RG.
Thus, at such a point,
|[VRe|? _ |VRe|? |Rc| |Re|? |VRe|?
0< (0, —A < 4 2 —
SO-Nge s g (PR 2% —r e
and hence
|VRc|? |Re] IRel|?
< 4)— 42 < 6.
HRGg < (ec+ )R + R <c+
We conclude that
|VRc|? c+6 |VRc|?
<C= .
RG, — = - nax Alv1) RGL
The claim now follows from Young’s inequality. O

Proposition 3.6. Let (M3 x [0,T),g) be the mazimal Ricci flow of a compact Rie-
mannian three-manifold (M3, g) with positive Ricci curvature.
Rinax(?)
Rmin(t)

where Rypax = max R, Ry = minR.
M3 M3

— 1 and diam(M?’,g(.’t)) —0 as t—T, (3.1)

Proof. By the gradient estimate (Proposition [3.5)), for every n > 0 there is a constant
() < oo such that

IVR| < L?R? +C,.

Since Ruax(t) — 0o ast — T, there is, for every n > 0, some point (z,,t,) € M3x[0,T)
such that

Rj = RE (2, ty) = Riux(ty) > 8C, /1P
and hence
(VR (2, 1) < 0*R2 (2 1)

for all z € M. Now let v be a unit speed g. , )-geodesic through 7(0) = z,. For each
s<L=n"'R, %, the mean value theorem provides some sy € (0, s) such that

R(7(5)s ty) = Ry + 5V 3160 R(Y(50), ) = Ry(1 7). (3.2)
Applying the preserved pinching estimate Rc > aRg, we may estimate

Re(v,7') > aR > aR,(1 —n)

fors <L Ifn< %, then

Re(v,9) > 2Ky,
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where K = 7R;. Choosing further n < -, we obtain L > 7K' Myers’ theorem then
implies that every point of M? is reached by a 9. t,)-geodesic of length at most L and
we conclude from (3.2) that

Rmin(tn) > (1- U)RmaX(tn) .
Since Ry, is non-decreasing, we then have
1
R2u(t) 2 (1= 1)*Ri(ty) = JRZ forall t>t,,

so that the above arguments hold for all ¢ > ¢,,. We now conclude that, given any
n < min{£, 3}, there is some time ¢, € [0,7") such that

1
di M,g.p) < ——— d Rupin(t) > (1 — n)Rupax(t
(M) € s and Ruialt) > (1= )R (1)
for all ¢t > t,,. The proposition follows since Rumax(t) > ﬁ O

It follows that the diameter of the rescaled metrics ﬁg(m remains bounded,
and their scalar curvature converges uniformly to a constant as ¢ — T'. Bootstrapping
arguments then yield smooth convergence to a round metric.

Theorem 3.7 (Hamilton [23]). Let (M3, go) be a compact Riemannian three manifold
with positive Ricci curvature. The mazimal Ricci flow (M3 x [0,T),g) of (M3,go)
satisfies
1 _
mg(ﬁ -9

uniformly in the smooth topology as t — T, where g is a metric of constant sectional
curvature one. In particular, M3 is a quotient of S3.

3.2 Manifolds with positive curvature operator. In higher dimensions, Béhm
and Wilking [7] were able to exploit the algebraic structure of the reaction terms
in the evolution equation for the curvature tensor to prove (using the vector bundle
maximum principle) that pinching of the curvature operator is preserved and improves
under Ricci flow in all dimensions. As a result, they obtained the following higher
dimensional analogue of Hamilton’s theorem.

Theorem 3.8. Let (M™, go) be a compact Riemannian manifold with positive curvature
operator. The mazimal Ricci flow (M™ x [0,T"),g) of (M™,go) satisfies

1 _
mgm -9

uniformly in the smooth topology as t — T, where § is a metric of constant sectional
curvature one. In particular, M™ is a quotient of S™.
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3.3 Positive isotropic curvature and the 1/4-pinched differentiable sphere
theorem. The quarter pinched sphere theorem of Rauch—Klingenberg—Berger states
that a simply connected, complete Riemannian manifold whose sectional curvature
satisfies i < sec < 1 must be homeomorphic to a sphereﬂ

Micallef and Moore [31] later showed that manifolds of POSITIVE ISOTROPIC CUR-
VATURE are homeomorphic to spheres. This condition states that the curvature op-
erator takes only positive values when acting on totally isotropic two planes. Since,
by Berger’s lemma, any manifold whose curvature is pointwise quarter pinched has
positive isotropic curvature, this generalizes the quarter pinched sphere theorem.

It is natural to expect that these results also hold within the smooth category
(i.e. such a manifold should be diffeomorphic to the sphere) but attempts to prove
this failed for almost fifty years, with the problem becoming known as the QUARTER
PINCHED DIFFERENTIABLE SPHERE CONJECTURE. The conjecture was finally resolved
in 2009 by Brendle and Schoen [10] using the Ricci flow.

Theorem 3.9. Let (M™, gg) be a compact Riemannian manifold. If gy has positive
1sotropic curvature, then the unique Ricci flow starting from gg deforms gg through a
family of metrics {gt}te[o,T); T < o0, each having positive isotropic curvature. More-

over,
1 _
T — 1) T —1) gt — g
uniformly in the smooth topology as t — T, where g is a metric of constant curvature
one. In particular, M"™ is diffeomorphic to S™.

Corollary 3.10 (Quarter pinched differentiable sphere theorem). Let (M",g) be a
compact Riemannian manifold. Ifi < sec <1, then M™ is diffeomorphic to S™.

The key ingredient was the discovery (following Bohm and Wilking) that non-
negative isotropic curvature is preserved by Ricci flow (established independently by
Nguyen [34]).

3.4 Pinched manifolds are compact. By establishing local versions of Hamilton’s
arguments, it becomes possible to apply them in the non-compact setting.

Theorem 3.11 (Ricci pinched three-manifolds are compact [1,/29,30]). Let (M3, g)
be a complete three-manifold. If R > 0 and

Rc > aRyg
for some o > 0, then M3 is compact (indeed, M> = S3/T).
The idea is to flow the metric by Ricci flow, preserving and improving the pinching

condition until it converges to a round point in finite time. Note, though, that this is
much harder to achieve in the (a priori) absence of compactness!

6The hypothesis is optimal since the sectional curvatures of the Fubini—Study metric on CP™ take values
between 1/4 and 1 inclusive.
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Theorem should be compared with the Bonnet—-Myers theorem (which guar-
antees that a complete Riemannian manifold with uniformly positive Ricci curvature,
Rc > ag > 0, is compact).

There are higher dimensional versions of Theorem which hold under stronger
conditions [28|35].

3.5 Exercises.
Exercise 3.1. Given non-negative numbers p1, p2 and p3, show that
2
> Ripi + pr — 3R)pipr — (Z p?) <0
itk i
with equality only if at least one of the numbers p; vanish, where R = p; 4+ p2 + p3.

Exercise 3.2. ) Show that, on any Riemannian three-manifold (M3, g),
IVRe|* > L|VR|?.

HiNT: Split VRc into its trace and trace-free components.
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4. RICCI FLOW ON SURFACES

Lecture 4. Ricci flow on surfaces

A key step in the proof of Hamilton’s theorem on the convergence of three manifolds of
positive Ricci curvature (and its higher dimensional analogues) was the improvement
of pinching of the eigenvalues of the Ricci curvature (or curvature operator). No such
estimate is possible in the two-dimensional setting, as, in that case, the curvature
operator has only one component! Fortunately, in two-dimensions, the Ricci flow enjoys
some additional structure, which actually allows us to prove something far stronger.

4.1 Special properties of the Ricci flow in two-dimensions. Since in two dimen-
sions the Ricci tensor is in proportion to the metric, the Ricci flow takes the form

oy = —2Kg, (4.1)

where K is the Gauss curvature. This equation is also the two-dimensional special
case of a number of other higher dimensional flows (e.g. the Kéhler Ricci flow, the
@Q-curvature flow, the Yamabe flow, and conformal flows by functions of the Schouten
tensor). With this in mind, it is perhaps not surprising that displays properties
of these higher dimensional flows that are not necessarily shared by the Ricci flow in
general in higher dimensions.

4.1.1 The logarithmic fast diffusion equation and conformal invariance. Two dimen-
sional Ricci flow (M? x I,g) of a compact manifold M? is actually a CONFORMAL
FLOW; that is, we can find a function u € C*°(M? x I) such that

2@ g 20y - (4.2)

To prove this, observe that a time-dependent metric of the form (4.2) satisfies Ricci
flow if and only if

Y(zt) = €

Orug = %Eatg = —Rec=—-Kg.
That is,
ou=—-K.
By Exercise [4.1],
K(z,t) = e 2@ (Agu(z, t) + Ko(z))

where Ag and K are the Laplace—Beltrami operator and sectional curvature of gg, so
we conclude that e?“g, satisfies Ricci flow if and only if

O = e 2 (Agu + Ko) . (4.3)

But this is a parabolic equation, and hence admits a (unique) solution u for a short
time, given the initial condition ug = 0. By uniqueness of solutions to Ricci flow on
compact manifolds, g = e** must be the unique Ricci flow starting from gq.
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4.1.2 Preservation of negative curvature. Since Rc = Kg, the Gauss curvature (which
is half the scalar curvature) evolves according to

(0 — A)K = 2K?. (4.4)

This means that negativity of curvature is also preserved in two dimensions. We also
obtain an analogue of 2.11}

Proposition 4.1. Let (M? x [0,T),g) be a Ricci flow on a compact two-manifold M?.
(1) If maxyp2y o) K= 0 then either K=0 or K <0 fort € (o, w).
(2) If maxp2y a0y K= —r=2 <0, then
K< ——+ —
M%lfﬁ} T r242(t—a)
fort e (a,w).
(8) If maxy2y o) K = r=2 >0, then
K< — ——
MH?lj?t} —r2=2(t-a)

fort e (a,w).

In fact, we can do better by making use of the Gauss—Bonnet theorem.

4.1.8 Constant rate of change of area. By the Gauss—Bonnet theorem and the first
variation of area, the area of a two-dimensional Ricci flow changes at a precise rate:

d

— area(t) = —2/ Kdp = —4mx(M?), (4.5)
dt M?2

where x(M?) is the Euler characteristic of M?. Integrating yields
area(M? t) = area(M?,0) — 4wy (M?)t, (4.6)
a remarkably simple (and useful) formula. Indeed, consider the average Gauss curvature

oty = hp K 2mx(M2) 2mx(M?)
T [ypdp area(M?2,t)  area(M?2,0) — dmx(M?)t

By (@.3) (or (@.0)).

d 2rx(M?) d 2 2
k= — M= t) =2k".
dt" area?(M?2,t) dt area(M?, 1) = 2n

Recalling (4.4)), we thus find that

(0 — A)(K — k) =2(K — k) (K—/H Amx(M?) )

area(M?2,0) — dmx(M?)t
and hence, if we normalize so that area(M?,0) = 4,

in K> 4.7
gy K E e (1)
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for t € [0,T), where ¢ is the solution to the problem
d¢ X(M?)
F_9 _ A" )
a =2 <¢ T

$(0) = ¢o = Mglxir{lo}(K —R);

that is (note that ¢g < 0),

() = il

(1 = x(M?)t)(1 = x(M?)t — 2¢ot)

—= as t— oo if x(M?) <0

~ —~ as t — oo if x(M?)=0

1
— as it ——— if x(M?) >0.
(1 — x(M?)t X(M?)

In particular, T' < W if x(M?) > 0.

There is, of course, a similar comparison from above for maxys2, () K, but that
estimate is of little utility. We will obtain a congruous estimate from above by a
different argument, which is strongly informed by the soliton setting.

4.2 Self-similar solutions. Recall that a metric ¢ on a two-manifold M? generates
a self-similarly expanding, steady or shrinking Ricci flow if there are a constant A € R
and a vector field V' such that

Re=MAg+iLyyg. (4.8a)

An important special class of solutions are those with V' = grad f for some POTENTIAL
FUNCTION f (e.g. the cigar soliton). In that case,

Rc = \g + V2f. (4.8b)

Taking the trace of (4.8a)) yields (note that, for any vector field V, %Evg is equal to
the symmetric part of VV)

K=A+3divV,
from which we see that is equivalent to

Lyg—divVg=0. (4.9a)
On a gradient Ricci soliton, this becomes

V2f—LiAfg=0. (4.9b)

Moreover, in case M? is compact,

0:/ dideu:Q/ (K—\) dp
M?2 M?2

Jar: Kdp
A= a2 20
fM2 dp

and hence
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Taking the divergence of , we find that
AV +Re(V) =0 (4.10a)
which, on a gradient Ricci soliton becomes
VK+KVf=0. (4.10b)
Taking the divergence of the latter yields
AK+ Vy K+ 2K(K—-X) =0. (4.11)

We may also rewrite (4.10b)), using (4.9b)), as
0=VK+ (K—-k)Vf+rVf

:VK+%Afo+an
— VK 4 Vy;Vf +kVf
=V (K+3VIP+rf). (4.12)

Theorem 4.2. Every compact, two-dimensional gradient Ricci soliton has constant
curvature.

Proof. Let (M?,g, f) be a gradient Ricci soliton on a compact two-manifold. By
Exercise the vector field K = J(Vf) is Killing. Since M? is compact, there
must be some o € M? such that V(o) = 0 and hence K(0) = 0. It follows that K
generates rotations, and hence we can find coordinates (r,0) € (0, R) x R/27Z such
that g = dr? 4+ 1?(r)df?kki. The claim now follows from the result of Exercise O

Essentially the same argument yields the following (recall Example .

Theorem 4.3. The cigar is the only steady two-dimensional gradient Ricci soliton with
positive curvature.

Sketch. By Theorem M? cannot be compact. It follows from Theorem m
(though indirectly; see Theorem below) that K — 0 as the distance to any fixed
point = of M? goes to infinity. But then K attains a (positive) maximum at some point,
at which Vf = VK/K = 0. The claim now follows as in the previous theorem and

Example O

4.3 The differential Harnack inequality. The heat equation satisfies a remarkable
property, known as the “differential Harnack inequality”, which states that any positive
solution u : R™ x (0,00) — R must satisfy

I
2
\VAl — >0.
ogu+2t_0

In fact, the inequality must be strict, unless u is a constant multiple of the (self-similar)

|lx—x 2

n \
fundamental solution, p(z,t) = (47t) e~ 1 for some zo. For an ancient solution
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u: R™ x (—00,00) — R, performing a series of time-translations yields the stronger
inequality

V2logu > 0.
Again, we have strict inequality, except in the exceptional circumstance that V2 logu =
0; that is, u is a constant multiple of the travelling wave solution, u(z,t) = e@ttv) v for
some v € R™.

Observe that, by (4.10b) and (4.11)), a two-dimensional expanding gradient self-
similar Ricci flow must satisfy

VK2 K
K t’
while a two-dimensional steady gradient self-similar Ricci flow must satisfy

K2
athAK+2K2:|VK|.

Theorem 4.4 (Differential Harnack inequality for two-dimensional Ricci flow). Along
any Ricci flow (M? x [0,T), g) with positive curvature on a compact two-manifold,
oK VK
K K?
fort € (0,T). In fact, the inequality is strict, unless (M? x [0,T), g) is a self-similarly
expanding solution.

oK = AK + 2K? =

1
+5 20 (4.13)

On any non-flat ancient two-dimensional Ricci flow (M? x (—o00,T),g),

oK  |VK|?
—_ >0. 4.14

In fact, the inequality is strict, unless (M?x(—o0,T), g) is a steady self-similar solution.

Proof. Consider the functions
Q = 0;logK — |[Vlog K|?
and
P = t(d;logK — [V1ogK[*) + 1.

Note that P = 0 if and only if (M"™ x I,g) is an expanding self-similar solution and
Q@ =0 if and only if (M™ x I, g) is a steady self-similar solution.

Now, after some relatively straightforward calculation, we find that
(0 — A)P > 29(V1ogK,VP)+QP.

Since Pli—p = 1 > 0, the maximum principle implies that P > 0 for positive times, and
either P > 0 or P = 0. The claims follow. ]

Note that, by continuity, smooth limits of Ricci flows on compact surfaces satisfy the
differential Harnack inequality (and hence also the rigidity case by the strong maximum
principle).
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Corollary 4.5 ((Integral) Harnack inequality for two-dimensional Ricci flow). Along
any Ricci flow (M? x [0,T), g) with positive curvature on a compact two-manifold,

K(xg, tQ) > |:t26Xp (d2($1, T2, t1)>:| -1
K(Qj‘l, tl) t1 4(t2 — tl)

for any w1, € M? and any 0 < t; <ty < T.

Proof. Integrate the differential Harnack inequality along curves of the form t —
(t,7(2))- 0

In fact, Theorem is the trace version of the following more general “matrix
Harnack inequality”.

Theorem 4.6 (Matrix differential Harnack inequality for two-dimensional Ricci flow).
Along any Ricci flow (M?x[0,T), g) with positive curvature on a compact two-manifold
M?,

1
<8tK —-K?+ tK) W = VwViwK + 29(VK AW, U) + K|U|> > 0 (4.15)
for every time-dependent vector field W and two-form U. In fact, the inequality is

strict, unless (M? x [0,T), g) is a self-similarly expanding solution.

Along any ancient Ricci flow (M? x (—o0,T), g) with positive curvature on a com-
pact two-manifold M?,

(0K — K?) [W[* = Vi ViwK + 29(VK AW, U) + K|U|* > 0 (4.16)

for every time-dependent vector field W and two-form U. In fact, the inequality s
strict, unless (M? x [0,T),g) is a steady self-similar solution.

Proof. Motivated by various identities which hold on expanding (and steady) solitons,
one considers the forms

QU,W) = (0K — K?) gW, W) — ViwViwK + 29(VK A W, U) + Kg(U, U)

and
PUW) =tQU, W)+ Kg(W,W).

After some arduous computations (motivated by various identities which hold on soli-
tons), it is possible to obtain a suitable differential inequality for P. [l

4.4 Uniformization of surfaces by Ricci flow. Recall the lower curvature bound

1
—g 8 t— oo if x(M?) <0
1
K—-k2> - as t — oo if x(M?) =0
1

1
e ——if v(M? )
T (M%) as t—>X(M2) if x(M*)>0
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from (4.7). We shall obtain a complimentary upper bound by seeking an estimate
which is saturated by soliton solutions. Recall that, on a gradient Ricci soliton, the
potential function f satisfies

Af=2(K—k). (4.17)
On the other hand, since its right hand side has zero average, the equation (4.17) admits

a solution f on any compact 2-d Ricci flow. Moreover, by the maximum principle, the
solution f is unique up to the addition of a function of time.

Lemma 4.7. Every Ricci flow (M? x [0,T),g) on a compact two-manifold M? admits
a curvature potential function satisfying

(815 — A)f = 2,‘-€f
and hence, assuming area(M?,0) = 4,

HliIlM2><{0} f
1— x(M?)t

maxpyr2 « {0} f

=IEasaer

(4.18)

Proof. Since, for any function wu,

OiAu = Adyu + 2KAu ,

we find that
Ao f = O Af —2KAf
=20;(K — k) — 4K(K — k)
=2A(K — k) + 4(K? — k%) — 4K(K — k)
=AAf+2:Af
=A(Af+2kf).
That is,

A0 f —Af —2kf)=0.
So O;f — Af —2kf is a function of ¢ only. By exploiting the freedom to add a function
of t to f, we can easily guarantee that

(O —A)f—2kf=0
as claimed. The second claim then follows from the maximum principle, since, under

(12
l}x(MQ)t g

the area normalization, k =
Recall from (4.12)) that, on a two-dimensional Ricci soliton,
0=V (K+VIP+kf).

That is, K + %]V fI? + kf is a function of time only. Consider then, on a general
(compact) two dimensional Ricci flow, the function

F=K+3|Vf*+xf
where f is a curvature potential satisfying Lemma [4.7]
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Proposition 4.8. The function F satisfies
2
(0y — A)F = 2xF — 2|V2f — 1A fg| (4.19)

and hence
max 2 {0} £’
—_— 4.20
— 1—x(M?)t (4.20)
with strict inequality unless (M? x I, g) is a soliton.

Proof. We leave the verification of (4.19)) as an exercise. The inequality (4.20)) follows
from the maximum principle, with strict inequality unless it holds identically. But in
that case (4.19)) implies that V2f — %A fg =0. The final claim follows. O

This is an extremely useful estimate. For instance, we immediately obtain precise
control on the maximal time of existence.

Corollary 4.9. Let (M?x[0,T), g) be the mazimal Ricci flow of a compact Riemannian
surface (M?, go). If x(M?) <0, then T = co. If x(M?) >0, then T = —

x(M?)*
Proof. By (4.18) and (4.20]), there is a constant C' < oo such that
c X
K< 1-— .
= T < = x<M2>t>
So the claim follows from the long time existence theorem (Theorem [2.16]). O

In fact, the estimate in conjunction with the lower bound will be suffi-
cient to establish infinite time existence and convergence of the flow in case x(M?) < 0.
The case x(M?) > 0 is somewhat trickier due to the finite time singularity. In that
case, we analyze the singularity by rescaling and applying Theorem The rescaling
normalizes the curvature, but we still need to establish lower bounds for the injectivity
radius. Note that, in the elliptic case, x(M?) > 0, the universal cover is S? (which is
compact), so it suffices to work on S2.

The ISOPERIMETRIC CONSTANT of a Riemannian two-sphere (M2 =2 52 g) is defined
by

length?(T")  length?(T") >

C(M?,g) = inf < area(21) area(22)

r

where the infimum is taken over all regular Jordan curves I' ¢ M? which (necessarily,
by the Schoenflies theorem) separate M? into two topological disks, €2; and Q. By
considering small loops, it is clear that

C(M?,g) < 4r.

Hamilton proved that the isoperimetric constant of a Riemannian sphere does not
decrease under Ricci flow.
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Proposition 4.10. Let (M? x [0,T),g) be a Ricci flow on a surface M?* = S2.

d
—C(M?,g) >0
dt ( 7gt)

in the sense of forward difference quotients whenever Cp(M?, g;) < 4.
Combining this with Klingenerg’s lemma yields the following lower bound for the
injectivity radius.
Corollary 4.11. Let (M? x [0,T), g) be a Ricci flow on a surface M? = S2.
m C(M27 gO)
~ 4 Kiax(?)

We now have all the ingredients needed to prove the convergence of two-dimensional
Ricci flow to a model geometry.

inj?(M?, g;) > (4.21)

Theorem 4.12 (Hamilton [24], Chow [13]). Given a compact Riemannian surface
(M2, go), let (M x [0,T),g) be the maximal Ricci flow starting at (M2, go).

— If x(M?) > 0, then T < co and (T aT—pJt converges uniformly in the smooth
topology to a metric of constant curvature K =+1 ast — T.

~ If x(M?) =0, then T = oo and g; converges uniformly in the smooth topology
to a metric of constant curvature K=0 ast — T.

— If x(M?) <0, then T = oo and %gt converges uniformly in the smooth topol-
ogy to a metric of constant curvature K = —1 as t — oo.

Sketch. Consider first the case x(M?) = 0. Since in this case x = 0, we find, for any
x € M? and any v € T, M?,

d

7 logg(z y(v,v) = =2K(z,t) = —2Af(x,t) = O f (2, 1) . (4.22)
Thus, recalling (4.18)), we can find C € (0,00) such that

Cilg(x,O) ('l), U) < 9(x,t) ('l),'l)) < Cg(a: 0) (U U)

for all x € M? and all v € T,M?. Since, by (&.7), K > —+ and the average of K is
zero, we find that K — 0 uniformly as ¢t — co. It follows from ) that g is Cauchy
in CY. Bootstrapping arguments yield higher order estimates and convergence.

The hyperbolic case, x(M?) < 0, may be treated similarly as the flat case, y(M?) =
0. We omit the details.

In the elliptic case, x(M?) > 0, we may work on the universal cover: S?. The
lower bound (4.21) for the injectivity radius allows us to blow-up at the final time
to obtain an ancient limit Ricci flow. Note that (by the ODE comparison principle)
max 2, ¢y K > (T 7 Assume first that maxyp2, n K < C(T - t)~! (the expected
rate of blow-up). Given any sequence of times t; T, choose points z; € M 2 such
that

-2 . —
i E e K=K
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and consider the pointed rescaled Ricci flows (M?x I}, x5, g;), where I; = [—rj_Qt L2 (T—

I 05
t5)) and (g5) (z,0) = 7“]-_29(96, 7“]2-15 +t;). Observe that the curvature K; of the rescaled Ricci
flow satisfies

Cr? c 20
Ki(x. 1) = r2K 2t < J - < )
(1) = ri(a,rjt +1;) < T—tj—rit 2 (T—t;)—t  1-2t

Since, by Corollary
WC(M27 gO)
2 )
some subsequence of the pointed rescaled Ricci flows (M2 x I j,j,g;j) converges locally

uniformly in the smooth sense to a limit ancient Ricci flow (M2, x (—00, 1), goo). Since,
by Proposition [2.7]

diam(M?, (g;)¢) = 7‘;1 diam(M?, 9r§t+tj) < 107“]72(T —t; — 1"]2-15) <C(1-2t),

inj(M?, (g;)¢) >

the limit is compact, and hence M2 = M? = §2,
Next, we claim that maxy2, gy F/k is constant on the limit flow. Recall that
max 2 (4 F/k is non-increasing on the original flow since

F
R IV2f — 1A fg|* .

In particular, maxy2, 4y F/r takes a limit as t — 7. Now, since both numerator and
denominator scale like curvature, we have, for any a < b € (—o0, 1),

F} Fj F F
max — — max — = max —_— — max —
M2x{b} Kj  M?x{a} Kj M2x{rb+t;} K M2x{rZatt;} K

for all j sufficiently large. But both r?a +1t; and r?a +t; tend to T, so the right hand

side tends to zero. So maxps2, g F /k is indeed constant on the limit flow. But then

% must be constant, due to the strong maximum principle. We conclude that

V2f—iAfg=0
on the limit flow, which must therefore be a gradient Ricci soliton, and hence the

shrinking sphere by Theorem [£.2] The theorem now follows from bootstrapping argu-
ments.

It remains to prove that K(7' — ¢) remains bounded. Suppose then that, to the
contrary,

limsup max K(T —t) =o0.
t T MZx{t}

For each j, choose (z;,t;) € M? x [0,T) so that

i—1 ) 1) — — i1
(T -5 —t)K(zj,t5) = MQXI[BI?FX—J‘*}(T J t)K

and set 7“]-_2 = K(zj,t;). Consider the pointed rescaled Ricci flows (M?x [aj, w;), x5, g;),
where o = —r;ztj, wj = ;4T -3~ —t;) and (95) @) = 7";29(x,rj2,t+tj)- Observe in

J
44



4. RICCI FLOW ON SURFACES

this case that
Qa; — —0Q, wj — 00,

and
T—j57 1t Wi
Ki(z,t) = r?K(z,r2t + t;) < J = J
j(’) J (’J+J)_T—j—1—r32t+tj wj—t’

which is uniformly bounded on any compact time interval for j sufficiently large. Since,
by Proposition the injectivity radii remain uniformly bounded from below after
rescaling, some subsequence of the pointed, rescaled Ricci flows (M? x [aj,w;), xj, g5)
must converge to an eternal limit pointed Ricci flow (M2 x (—00,00), Too, goo). Since
this Ricci flow is the limit of compact Ricci flows, it satisfies the differential Harnack
inequality. But, by construction,

K < limsup
j—oo W5 —

Thus, at (20, 0), K = VK = 0, and hence the rigidity case of the differential Harnack
inequality implies that (M2 x (—00,00), gso) is a steady soliton, which must be a cigar
by Theorem and the curvature normalization at (2, 0). But the cigar violates the
(scale invariant) lower bound for the isoperimetric constant (which passes to the limit
as it is scale invariant and lower semi-continuous under local uniform congvergence).
This completes the proof. ]

=1=K(2,0).

The original argument of Hamilton and Chow made use of the Kazdan—Warner
identity — which relies on the uniformization theorem — to establish Theorem The
argument presented here for Theorem (which does not require the uniformization
theorem) was pointed out by Chen—Lu—Tian [12].

A different proof of Theoremwas later found by Andrews—Bryan |2] and Bryan
[11] (following Hamilton [25]). They were able to obtain a very sharp estimate for the
isoperimetric profile under Ricci flow, sharp enough indeed to obtain sharp control on
the curvature (which appears in the second derivative of the isoperimetric profile), and
thereby obtain convergence directly.

4.5 Exercises.

Exercise 4.1. Suppose that the two metrics go and g; on a surface M? are related by
go = e?“g; for some function u. Show that the respective sectional curvatures Ky and
K are related by

Ky = eiQu(Alu + Kl) ,

where A; is the Laplace—Beltrami operator induced by g;.
Exercise 4.2. Let (M2, g, f) be a two-dimensional gradient Ricci soliton. Show that
K =J(Vf)

is a Killing vector field, where J : TM? — TM? denotes counterclockwise rotation in
the fibres through 90 degrees. HINT: first show that J is parallel.
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Exercise 4.3. Show that a solution to the heat equation u : R™ x (0,00) — R satisfies
n
V21 —=0.
ogu + 2%
if and only if it is a fundamental solution.

Exercise 4.4. Prove that ]
Alogu + 5 >0
for any positive periodic solution u : T™ x [0,00) — R to the heat equation. HINT:
Consider the function P = 2tAlogu + 1.
Exercise 4.5. Prove that I
V21 —>0
ogu + 5 =

for any positive periodic solution u : T™ x [0,00) — R to the heat equation, where I is
the Euclidean inner product. HINT: Consider the function P = 2tVy Vy logu + I for
any fixed vector V € S™.

Exercise 4.6. Set U = VAW in (4.15)) and trace with respect to W, and then optimize
with respect to V' to obtain (4.13]).
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Lecture 5. Singularities and their analysis

We have seen that finite time singularities will occur under Ricci flow if, for example,
the scalar curvature is initially positive. In two dimensions, we were able to deal with
finite time singularities by “blowing up” and classifying the possible blow-up limits.

Note the following immediate corollary of Theorem [2.19] which demonstrates the
importance of ancient Ricci flows in the analysis of singularities.

Lemma 5.1. Let (M™ x [0,T),g) be a Ricci flow with T < oo and {(zk,tr) }ken @
sequence of spacetime points (xy,tx) € M™ x [0,T) with t, — T. Suppose that
(1) r,;Q = |Rm<xk’tk)| — 00 as k — oo;
(2) for every A < oo some C' < 0o and kg € N can be found such that Ba,, (xg, ti) X
(tp — A%r2 ty] € M™ x [0,T) and

sup |Rm| < CTI;Q
Bary, (xg,t) % (b — A7} tx]
for every k > ko; and
(3) there exists k > 0 such that

volume(Bay, (2, tk), tk) > K}
for every k.

For each k, define the rescaled Ricci flow (M™ x [—r %ty (T — tx)), gr) by

.2
(gk)(z,t) =Tk Yar2tty) -

There exists a complete pointed ancient Ricci flow (M™ X (—00,w), Too, §oo) Such that,
after passing to a subsequence, the pointed rescaled Ricci flows (M™ x (—r2ty, 0], zk, gk)
converge locally uniformly in the smooth topology to (M™ X (—00,0], Zso, goo). That is,
there exists an exhaustion {Uy}ren of Moo by precompact open sets Uy, satisfying Uy, C
Uky1 and a sequence of diffeomorphisms ¢y, : Ui — M with Or(Too) = xg Such that
19 = goo uniformly in the smooth topology on any compact subset of Mu, x (—00,0].

5.1 Curvature pinches towards positive. Recall that the Ricci flow forces scalar
curvature towards the positive. For three dimensional Ricci flow, a similar phenomenon
holds for the full curvature operator.

Theorem 5.2. Let (M3 x [0,T),g) be a Ricci flow on a compact three-manifold M?>.

Denote by A1 < A2 < A3 the eigenvalues of the curvature operator. If A1(-,0) > —r~2,

then
—A1(log(—=Ay) +log(r®* +t) —3) <R (5.1)

for all t € [0,T) wherever \; < 0.

Sketch. By scaling, it suffices to prove the claim when r = 1. With the vector bundle
maximum principle in mind, observe that the subset set K of “algebraic curvature

47



THE RICCI FLOW - A MINICOURSE

operators” S € (A2(TM))* @ A*(TM) defined by the inequalities
=3
141t

o> ;1
T 14t
where o = minj,|—; S (v,v), is convex in the fibre and parallel translation invariant. The
proof therefore consists in establishing that the vertical field F(S) = S? + S# points
into K at any boundary point. O

tr.S > and

or o(log(—o)+log(l1+1t)—3)<trS

Since R > 0 on any compact ancient Ricci flow, replacing ¢t by ¢ — o and taking
a — —oo, it follows immediately that

Corollary 5.3. any ancient Ricci flow (M3 x (—oo,w), g) on a compact three-manifold
has non-negative curvature operator.

Observe, moreover, that any sequence of eigenvalues /\{ < )\g < )\g such that
M AN > 2
~ A\ = —o0, and
= =X (log(=]) +log(r? +T) = 3) <20\ + X + X))
satisfies .
Y 6
N, log(—=X]) +log(r2+T) — 3
It therefore follows from Theorem [5.2| that any (not necessarily compact) blow-up limit

(i.e. an ancient Ricci flow obtained as in Lemma [5.1)) about a finite time singularity of
a Ricci flow on a compact three-manifold has non-negative curvature.

— 0 as 7 — oo.

5.2 Ricci solitons. Recall that a triple (M™, g, V) is a Ricci soliton if
1
Rc=\g — §£Vg (5.2a)
for some A € R. When V' = V£, the triple (M™, g, f) is a gradient Ricci soliton, and
Rc = \g — V?f. (5.2b)

As in the two dimensional case (gradient) Ricci solitons satisfy a number of infor-
mative identities. Indeed, tracing the soliton equation yields

R=n\A—-divV (5.3a)

which for a gradient soliton becomes
R=nA—-Af. (5.3b)
Taking the divergence of the soliton equation and applying the contracted second

Bianchi identity then yields
AV +Re(V) =0, (5.4a)
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which for a gradient soliton becomes

$VR+Re(Vf) =0 (5.4b)
Contracting the gradient soliton equation with V f and applying yields
R+ |Vf2—2\f=C, (5.5a)
where C' is constant. Applying then yields
~Af+ V2 +nr—20f=C (5.5b)
Taking the difference between and half of yields
SRH+AF =LV +Af=nr—1C. (5.5¢)

Observe that, on the self-similarly shrinking Ricci flow (M™ x (—00,0), ¢*g), % =
¢*V f, corresponding to a gradient shrinking Ricci soliton (M™, g, f),
of=Vvysf
=|VfI?

= —Af+[VIP-R+—

due to (5.3b). Writing h = (—2t)"2e 7/, we find that
—(O+A—-R)h=0.

That is, h satisfies the CONJUGATE HEAT EQUATION. The name comes from the fact
that, along any Ricci flow,

d
— / up dyp = / (Opup + udrp — Ruyp) du
dt Jare M2

= /M2 (p(0r — A)u+u(d + A = R)p) du

so long as ¢(+,t) is compactly supported. In particular, a smooth function u : M™ x
(a,b) — R satisfies the heat equation if and only if every smooth function ¢ : M™ x
(a,b) — R which is compactly supported in M™ x (a,b) satisfies

b
// u(Oy — A)*odudt =0,

Oy —A)"=—(0+A—R)
is the CONJUGATE HEAT OPERATOR.

where

Theorem 5.4. All compact shrinking Ricci solitons are gradient.

Proof. Let (M™,g,V) be a compact shrinking Ricci soliton. We seek a solution f to
the equation

1
§£Vg = V2f .
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(Rather than Vf = V, which may not be possible since (M", g,V + K) is also a
shrinking Ricci soliton for any Killing vector field K.) Equivalently, we seek a function
f such that the tensor
S =Rc+ V3f — \g
vanishes identically. Observe that
divS = 1VR + VAf + Re(Vf)
and
S(Vf) =Re(Vf) + 3VIVI[* = AV S

and hence

V(EAR+AF—LVIP+Af) =divS — S(Vf),
which we may rewrite as

VER+Af =V +Af) e =div(e™S).
Thus,

/ 152~ dy = / o(V(VF— V).l S) dp
Mn n
o / G(Vf — V,div(e™S)) dy

= — /Mng(Vf —V,V(SR+Af =LV +Af) )e’fd,u.
So it suffices to find a constant C' and a function f satisfying
IR+Af-LVIP+Af=C (5.6a)
or equivalently, a function h = et satisfying
Ah — %Rh—k)\hlogh = —%Ch. (5.6b)

The equations (5.6a) and (5.6b|) are the Euler-Lagrange equations for the constrained
functionals

1
F(f) = 2/ (|Vf|2 + R+ )\f) e~/ du subject to / e~/ du = const. (5.7a)
Mn n

and

G(h) = 2/ (IVR[* + 1RR?* — Ah?log h) du subject to / h%dy = const. (5.7b)

n

respectively. We have thus reduced the problem to finding a minimizer for ([5.7b]).
This is fairly classical: first observe that, by Jensen’s inequality, interpolation and the
Poincaré—Sobolev inequality, we may estimate, for any € > 0,

1 1
h2log hdy < 24\ 20, )"
ghdu <e |Vh|“du | + C: hedu) .
n MTL n

Choosing ¢ sufficiently small, we find that
G(h) 2/ |Vh|>du — C.
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From this we deduce two things: first that G is bounded from below, and second
that the H! norm is uniformly bounded along any infimizing sequence {h; }jen. Since
h ~ h%logh is continuous in H!, it follows that a minimizer exists in H'. Smoothness
of the minimizer may be established using the de Giorgi—Nash—-Moser and Schauder
estimates.

Alternatively, we may exploit the gradient flow
O f = div (e*f (Vf— V)) — Af+Vyf— |[VP+R—n\.

Indeed, under this equation,
d

d
—F(f)=—- 2e=1d d — Fdp=0.
7 (f) /n|S|e [ an ; Mne w=20

So the energy decreases (strictly unless u is a stationary point of F) and the constraint
is maintained. Since the equation is parabolic, we obtain short time existence from
any smooth (say) initial condition. Longtime existence and smooth convergence to
a stationary point of F' (a minimizer if the initial energy is sufficiently close to the
minimum) may be obtained by exploiting estimates for the (divergence form) linear
equation

Ou = Au+ Vyu+ (R—nA\u
satisfied by u = e~ 7. O

5.3 The differential Harnack inequality. The differential Harnack inequalities for
two-dimensional Ricci flow (Theorems and have the following higher dimen-
sional generalization.

Theorem 5.5. Along any Ricci flow (M™ x [0,T), g) with positive curvature operator
on a compact manifold M™,

Mi;WiW; + 2P;,U Wi + R0 U Uy + %Rezj >0 (5.8)
for every time-dependent vector field W and two-form U, where
M;j = ARcij 4+ 2RmggiRep — 5 (ViVR + 2Rc))
and
Piji = ViRejr — VjRejp, .
The inequality is strict unless (M™ x [0,T), g) is an expanding soliton.

Along any ancient Ricci flow (M™ x (—00,0), g) with positive curvature operator on
a compact manifold M™,

M WiW; + 2P;,.Ui Wy + Rm U Ujp > 0 (5.9)

for every time-dependent vector field W and two-form U, with strict inequality unless
(M™% [0,T),g) is a steady soliton.
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Sketch. Motivated by various identities which hold on expanding (and steady) solitons,
one considers the forms

QU,W)=MW,W)+2P(U,W)+Rm(U,U)
and
PU,W) =2tQ(U, W)+ Rec(W,W).
After many arduous computations (motivated by various identities which hold on soli-

tons), it is possible to obtain a suitable differential inequality for P. ]

Theorem 5.6. Along any Ricci flow (M™ x [0,T), g) with positive curvature operator
on a compact manifold M™,

1
R +2VyR + 2Rc(V,V) + 2—tR >0 (5.10)

for every time-dependent vector field V', with strict inequality unless (M™ x [0,T), g) is
an expanding soliton.

Along any ancient Ricci flow (M™ x (—o0,0), g) with positive curvature operator on
a compact manifold M™,

OR + 2VyR + 2Rc(V, V) > 0 (5.11)

for every time-dependent vector field V', with strict inequality unless (M™ x [0,T), g) is
a steady soliton.

Proof. Take the trace of (5.8) and (5.9). O

Note that, by continuity, smooth limits of Ricci flows on compact manifolds satisfy
the differential Harnack inequality (and hence also the rigidity case by the strong
maximum principle).

When Re > 0, the differential Harnack inequality (5.11]) is optimized by the vector
field V = —iRc ! (VR), giving

R > $Rc™'(VR,VR). (5.12)

Equivalently, R(¢7 (-, t),t + 7) is pointwise monotone non-decreasing with respect to ¢
for each 7 < 0, where ¢" is the solution to

deT .
p (x,t) =V (¢ (z,t), T+ 1)

¢ (x,0)=x.

Thus, the scalar curvature R of the reparametrized flow {¢7 }1c(—oc,—r), Where g] =
&7 (+yt)* g+, is uniformly bounded on any time interval of the form (—oo, T, and hence,
in any (pointed) limit as 7; — —oo, we obtain a Ricci flow (plus Lie derivative term)
for which R is constant in ¢ — a steady soliton!

Corollary 5.7 (Ancient solutions decompose into steady solutions). Let (M"x(—00,0), g)
be an ancient Ricci flow on a compact manifold M™. Given any point o € M?
and any sequence of times t; — —oo, some subsequence of the pointed Ricci flows
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(M™ x (—0,0),0,g7), where g{x N gz, t +t;), converges locally uniformly in the
smooth topology to a steady Ricci flow.

5.4 Perelman’s monotonicity formulae. Given a compact Ricci flow (M™% [0,T), g),
define the functionals

F(f.9) = /Mn (IVf*+R)e Tdu (5.13a)

and
W(f,g,7) #/ [T (IVf?+R) + f —n] (dr7) " 2e fdu. (5.13b)
M'n

Observe that the F-FUNCTIONAL is (up to a factor of two) simply an extension to
general Ricci flows of the F-functional in the steady case, A = 0, while the W-
FUNCTIONAL corresponds to F' in the shrinking case, A > 0 (as 7 will correspond to
negative time). Indeed, applying the soliton identities derived above, it is not too hard
to verify the following:

(1) If along a steady self-similar Ricci flow (M™x (—o00, 00), g) a function f satisfies
(@ +A+R)f =|Vf],

then (assuming all integrals are finite and all integrations by parts are per-

missible)
d
—F(f,9) =2/ IRe + V2f| %~ dp. (5.14)
dt 2
(2) If along a shrinking self-similar Ricci flow (M"™ x (—00,0),g9) a function f
satisfies

O+ A+R)f =|VF?+ 5,
then (assuming all integrals are finite and all integrations by parts are per-
missible)
d
—W(f,g,—t) = —2t/ Re+ V2f — Lgle ™/ dp. (5.15)
dt M2

In fact, these identities hold along any Ricci flow on a compact manifold.

Theorem 5.8 (Perelman’s monotonicity formulae [36)). Let (M™ x I,g) be a Ricci
flow on a compact manifold M™.

(1) If f satisfies
(O +A+R)f =V,
then p
@}"(f, g9) = 2/M2 |Re + V2f]267f dp . (5.16)
(2) If f and T satisfy

O+ A+R)f=|VfP+ &,

dr
o
dt

)
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then

dt
so long as 7 > 0.

d
—W(f,9,7) = 27’/ |Rc + Vif - %glze_f du (5.17)
M?2

In particular, on a compact manifold M™, the functional

Aarmg) =t {Fg.0): [ o anf

is non-decreasing under Ricci flow (strictly, unless (M™, g) is a gradient steady soliton)
and the functional

(M, g, 7) = inf{W(g,f,T) : /

is mon-decreasing under Ricci flow for 7 > 0 (strictly, unless (M™,g) is a gradient
shrinking soliton).

(4rr)"2e Fdp = 1}

n

5.5 No local collapsing. Consider a Ricci flow (M™ x [0,T),g). Given ty € [0,7T),
set 7 = to+ 2 —t and consider the test function u(-,ty) = (4nr?)"ze /(:10) with
e Thto) = Ay By (z0,t0)- Observe that, in order to satisfy the constraint

/ u('7t0)dﬂto =1 y

we should take A ~ VOlume(B;,Sxo’to)’tO). Monotonicity of the p-entropy then implies

,U,(Mn,gg,to + T2) < /J,(Mn,gto, T2)

< W(ga f(',to),’l“Q)
1 By (o, 10),
r? max R(-,to) +In volume(B: (o, to), to) :
Br(mo,to) rn

N

Thus, if R(-,2p) < r~2, then

(Br(zo,t0),to)
/'nn

volume > k(M", g0, T)!

This is not quite rigorous, as the test function is not smooth (we took the |V f|? term
to be zero). To rectify this, we introduce a cut-off function.

Theorem 5.9. Let (M™ x[0,T),g) be a Ricci flow on a compact manifold M™. Given
(x,t) € M™ x [0,T), if | Rm|?> <r~2 on B.(x,t), r <1, then
volume(B,(x,t),t) > kr’,
where k = K(M"™, go, T).
Proof. Set 7 = tg + 72 —t and let ¢ : [0,00) — [0,1] be any fixed smooth function

satisfying ¢>|[0,%} =1, ¢|j1,00) = 0, and % < C. Define

f(x,to) = A —log <¢ (dlSt(f”OxtO)»

r
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and

u(x, to) = (4mr?)"2e/
_ (47[_7,2)7%(1) <diSt(CCQ,SC,t0)> eiA,

r

where A is chosen so that

u(-,to) dpg, = 1.
Mn

A= log (4777"2)_;/ ) <d($0,,to)> dpug,
BT(:EOytO) r
< log <(47T)_;L VOlume(Br(:L‘o,to),to)>

,’an
Thus, upper bounds for v will imply lower bounds for the volume ratio.
Observe that

Wi o)) = [ R T 4 )

A T R O
Br(wo,to) T T T

—C+ A— 1Og(¢<dl8t(m’$’t0))>uduto
Br(z0,to)

Note that

r

B, (20.10) 108 <<75 (diSt(x;}’*’”’tO)» ¢(dist(i0,m7t0)) i
dist(xo,-,t
fBT(zo,tO) w dpg,
lume (B, (xo, to), to)
< C A Cl Vo ? )
<C+A+ volume(Bz (z, to), to)

r
2

—C+A-

<C"+ A
due to the Bishop—Gromov inequality. The claim follows since
P(M™, go.to +1%) < u(M™, gy, %) < Wgtg, f(-,t0), )
and to +1r2 < T. ]

5.6 Exercises.

Exercise 5.1. Verify the soliton identities ([5.4a)), (5.4b]) and (5.5al).

Exercise 5.2. Show that (R",ggn,3A|z|?) is a shrinking/steady/expanding soliton
according to the sign of \.

Exercise 5.3. Let (M"™,g) be a compact Riemannian manifold of dimension n > 3.

Suppose that
!/ RPdu=1.
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(1) Using Jensen’s inequality, show for any v > 0 that

1
/ hzloghdugrylog</ h2+7du>.

(2) Using the interpolation inequality for Lebesgue spaces, Young’s inequality,
and Holder’s inequality show, for a suitable choice of v = ~(n) > 0, that

1 1
P . 2%
</ h2+7du> - Ss(/ h? du> el

for any any € > 0, where 2* = n?f" is the Sobolev conjugate of 2 and C;

2
depends on n, volume(M™) and e.

(3) Deduce from the Sobolev inequality that

1
2
/ h2loghdu§5</ |Vh|2du> + C.
n Mn

for any ¢ > 0, where C; depends on n, volume(M™) and e.
Exercise 5.4. Suppose that the data (M"™ x I, g, f) satisfy the system
Ls9= —2(Rc+ V3f)
{((%—l—A—i—R)f:O.

Assuming M™ is compact, show that the NASH ENTROPY

N(g. )= feldu

M?’L
satisfies

NN == [ (IP+R) du.
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6. ON THE CLASSIFICATION OF ANCIENT SOLUTIONS

Lecture 6. On the classification of ancient solutions
Let (M™ x [0,T),g) be a maximal Ricci flow on a compact manifold M™ such that
T < oo. If we choose (z;,t;) such that

Qj = |Rmy, 4 )| = Y [Rm],

then the pointed Ricci flows (M™ x I, g;), where (g;) ) = Q9 (0.5 Lt t5) and [; =
[—Qjt;, 0] satisfy

(1) [Rm| <1,

(2) Rmg, ] =1,

(3) If r < Q]% and |Rm| < 77! in B,(z,t), then volume(B,(z,t),t) > krm.

By the compactness theorem, we can find a complete subsequential limit (M™

(—00,0],0,g) such that
(1) |Rm| <1,
(2) Rm(0)| =1,

(3) If |Rm| < 77" in B,(z,t), then volume(B,(z,t),t) > kr".
Moreover, when n = 2 or n = 3,
(4) Rm > 0.
Note that the limit also satisfies the differential Harnack inequality, by continuity.

Definition 6.1 (k-solutions). Given k > 0, a complete ancient Ricci flow (M™ x
(—o0,to],g) is called a k-solution if the following properties are satisfied:

(1) [Rm| < K < oo,

(2) Rm >0,

(3) R >0,

(4) O:R + 2V,R + 2Rc(v,v) > 0 for allv € TM.

(5) If Rm| < r=1 in B,(x,t), then volume(B,(x,t),t) > xr".

The motivation for the definition is clear: a good understanding of k-solutions will
provide a good understanding of singularity formation in three-dimensional Ricci flow
on compact manifolds.

On the other hand, understanding the landscape of ancient solutions without addi-
tional conditions is a fascinating problem in its own right. However, without additional
conditions (such as curvature positivity and/or non-collapsing), it is an exceedingly dif-
ficult problem in general.

6.1 Ancient solutions in two-dimensions. So far, the only ancient Ricci flows we
have seen in two dimensions are (highly symmetric) solitons. Namely, the static/shrinking
plane, the shrinking sphere, and the cigar soliton (modulo quotients). There is a further
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(non-soliton) example (discovered independently by Fateev—Onofri-Zamolodchikov [22]
King [26] and Rosenau [38]).

Example 6.1 (The ancient sausage solution). The time-dependent metric
g=x>dr* +4*do*, (6.1a)

where
tanh(—2t)

= s rtani®(—20) 9 V2 (r,1) = cos® rx*(r, 1), (6.1b)

X(r,t) =

extends to a (time-dependent) metric on S? and evolves by Ricci flow. Indeed, v is
smoothly odd at r = &7 and, introducing the arclength coordinate

s(r,t) #/0 x(p,t)dp,
we find that

o s 1 1+sin’rtanh®(=2t)  xi W

¢ sinh(—2t) cosh(—2t) 1 —sin? r tanh?(—2¢t)  x ¥

So (82 x (—o0,0), g) indeed satisfies Ricci flow. We also see that its curvature is positive
everywhere at all times.

Observe that, for any fixed r € (-3, 5),
s(r,t) — 2arctanh(tan §) and ¥(r,t) — 1

as t — —o0. So, away from the poles, the solution looks like a flat cylinder of radius
one when t ~ —oco. (In fact, since the curvature converges to zero away from the poles,
the Bernstein estimates and interpolation can be exploited to obtain local uniform
convergence in the smooth topology.) On the other hand, near each pole, the sausage
resembles a cigar soliton of the same scale as the asymptotic cylinder. There are
various ways to see this; for instance, one may apply the rigidity case of the differential
Harnack inequality to obtain an asymptotic steady soliton as explained in §5.3} this
soliton will be rotationally symmetric with curvature lim;, o, K(£%,) = 2 at the
centre of symmetry, and must therefore be the (unit scale) cigar.

One way to “derive” the ancient sausage is as follows (see [38]): recall that solutions
w:S8? x I — R to the logarithmic fast diffusion equation

ur = Agz logu — 2 (6.2)

give rise to Ricci flows via g = ugg2. We seek a solution to (6.2)) which is rotationally
symmetric; i.e. u(r,6,t) = u(r,t). In that case, (6.2]) becomes

1
- 1 -
up = (cos r(log “)T)r

1
= Cos?r (log u)ee — 2,
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where 0¢ = cos70;. Settingﬂ v = cos>

satisfy

ru (and § = 2arctanhtan %), we find that v must

vy = (logv)ee, (6.3)
the one dimensional logarithmic fast diffusion equation! Observe now that the anti-
derivative V (&, t) = fog v(x,t) dz of a solution to (|6.3)) satisfies the equation

Vi=(logVe)e —C, CeR. (6.4)
This does not seem much of an improvement, but consider the following remarkable
fact (which is readily verified): if (§,t) — X (£+At) and (€, ) — Y (£ —A\t) are similarity
solutions to (6.4)), then their sum is also a solution (even though ((6.4]) is non-linear!)
Consider, then, the ansatz
V(¢ 1) =F(£+ M) — F(&— \t)
for some univariate function F. This will solve (6.4)) if and only if f = F” satisfies
f'=Xf?+Cf+D
for some constant D € R. The solutions are given by
f(z) = a— Btanh(AB(z — 2p))
for «, B, zo € R, which yields the solution
v(&,1) = Btanh (BA(E — A(t — 10))) — A tanh (BA(E + A(t — 1))

to (6.3). Smooth extensibility to the sphere demands that zg = 0 and 8 = AL
The constants A and ty then correspond to parabolic dilations and time-translations,
respectively. Taking to = 0 and A = 2, we arrive at

g = (tanh (¢ — 2t)) — tanh (£ + 2¢))) (d¢* + d6?)
_ tanh (2(arctanh tan 5 —t)) — tanh (2(arctanh tan § + ¢))
N 2cos?r

(dr® 4 cos® rdf?) .
Applying the addition law

tanh x + tanh y
tanh =
anh(z +y) 1+ tanhxz tanhy

recovers (6.1).

Consider now the time-dependent diffeomorphisms ¢4 (-,¢) : R x S — R x S?
defined by ¢+ (&,60,t) = (£ £ 2t,60). Observe that

G+ (5 )9, 0,04r) — ux (&, t)(d€* + db?)
as t — —oo, where
we (6,1) = %(tanh(ig —2)+1).
This extends to a metric on the plane ({ = Foo corresponding to the origin) and
the convergence can be bootstrapped to smooth convergence on compact subsets of

R? x (—00,00). We leave it to the reader to verify that the metrics g+ = u(d¢? + df?)
are both isometric to the unit scale cigar solution. (Indeed they must be, since they

"The map (r,0) — (£,0) is an isometry from ((—%, %) x 51, u(dr? + cos? rdh?)) to (R x S, v(de? + dh?)).
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are rotationally symmetric steady Ricci flows on the plane with “asymptotic radius”
limgﬁioo u = 1.)

This example completes the list of two-dimensional ancient Ricci flows!

Theorem 6.2 (Classification of ancient Ricci flows in two-dimensions [17-20]). Every
mazimal, complete ancient Ricci flow (M? x (—oo,w), g) on a connected surface M? is
either

— a shrinking round sphere,

a static or shrinking flat plane,

a cigar solution,

— an ancient sausage, or

an isometric quotient of one of the above examples.

Sketch. We may suppose, without loss of generality, that (M? x (—oo,w), g) has pos-
itive curvature. Next note that, if M? is not compact, then (M? x (—oo,w), g) must
have curvature tending to zero at infinity. Indeed, for any ty and any sequence of points
x;j such that d(z;,0,tg) — oo, the sequence (M",x;, g,) subconverges in the pointed
Gromov—Hausdorff sense to a limit space which contains a line, and hence splits off a
line. But in two-dimensions, this limit must be locally isometric to R?. Thus, for j
sufficiently large, B, (z;, o) is close to a Euclidean ball in the Gromov-Hausdorff sense
after passing to its universal cover. In particular, its volume (in the universal cover) is
close to 772, So Perelman’s curvature estimate implies that K(x;,tp) — 0.

Bounded curvature at infinity is sufficient to establish the differential Harnack in-
equality. By exploiting the differential Harnack inequality and a type-1 vs type-11
analysis, Chu and Daskalopoulos—Sesum were able to show that the cigar is the only
possibility in the non-compact case.

The compact examples were classified by Daskalopoulos—-Hamilton-Sesum. The key
ideas are a monotonicity formula

d S2 12
dt Jg ('vvl}"‘“’ dpsz <0,
1

for the PRESSURE FUNCTION v = u~
solutions to the equation

, and an analysis of the backwards limits of
v, = v3(Ag2logv +2). O

6.2 The structure of noncollapsing ancient solutions. So far, our only examples
of ancient solutions are either solitons with a high degree of symmetry (obtained by
reduction to an ODE) or the ancient sausage solution (an explicit non-soliton solution
obtained by ad hoc methods). Perelman provided the first truly “parabolic” (in the
sense of PDE methods) ancient Ricci flows [37].
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Theorem 6.3 (The ancient Steedenﬁ). There ezists a non-round ancient Ricci flow
(93 x (—00,0), g) which has positive curvature and on which O(3) x O(1) acts by isome-
tries.

Sketch. The idea is to take a limit of “very old” solutions constructed by evolving
suitable initial data. We begin by evolving a sequence of (O(3) x O(1)-invariant)
smoothly capped cylinders Cy = S? x [k, k] of radius one and length 2k. When
k = 0, the solution is the round sphere of radius one, which shrinks to a point after
time ~ 1. For other values of k, Cj, still shrinks to a point in time ~ 1 (since R ~ 1
at the initial time), becoming round in the process (in accordance with Hamilton’s
theorem). After translating time, we can arrange that the final time is t = 0. By
the trace Harnack inequality (Theorem and the linear distance distortion estimate
(Proposition , the “perigee” and “apogee” take a fixed time to decrease by 1/2.
So we can parabolically rescale so that, for kK > 1, the “eccentricity” is ~ 2 and the
diameter is ~ 1/2 at time ¢t = —1, and that the initial time oy goes to —oo as k — oo.
Since the volumes are uniformly controlled from below, Perelman’s curvature estimate
and the Bernstein estimates ensure that the curvature and its derivatives are uniformly
bounded along the sequence. We can now take a limit using the compactness theorem.
Since we ensured that the eccentricity is ~ 2 at time —1, the limit cannot be the
shrinking sphere. O

Theorem 6.4. Let (M" x (—00,0], g) be a k-solution. If M™ is non-compact, then the
ASYMPTOTIC CURVATURE RATIOM

R(M",g0) = limsup R(z,0)dist?(x, 20, 0)

dist(z,z0,0)—00

1s infinite.

Sketch. Suppose, contrary to the claim, that R(M™, gg) < oo. Consider the rescaled
flow (M™ x (—o0,0], \2g5—2,). Note that at time zero, the rescaled metrics (M™, A\2go)
always limit to some metric cone (C,d,0) as A \, 0 in the Gromov—Hausdorff sense.
Due to the curvature bound (and non-collapsing) the limit and the convergence will be
smooth away from the tip, 0. But since the radial direction must be a null eigenvalue of
Re, we deduce (as before) that the limit splits off a line. But this is only possible if the
limit cone is flat, and this violates positive curvature (by Toponogov’s theorem).  [J

Corollary 6.5. Let (M™x(—00,0],g) be a k-solution. If M™ is non-compact, then there
are points xj; € M"™ and scales \j such that (M" x (—00,0],;,9;), (95)(z,) = /\?g(x A7)
A

converges to a k-solution which splits off a line.

8Steeden are the producers of the iconic Australian Rugby League football (which is more oval than a
European football but less pointy than a North American football). Evidently, I am a Rugby League fan;
followers of the Rugby Union may prefer the “ancient Gilbert ”; followers of Australian Rules Football may
prefer the “ancient Sherrin”. Followers of American or Canadian football should consider varifolds.

9This number is independent of the choice of point xg.
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Sketch. Since the asymptotic curvature ratio is infinite, we can find points z; € M"
such that

d? = 10R (=}, 0) dist?(z, x9, 0) — 0.
. ) . C g
In particular, dist*(z;, z9,0) — co. By pomt-.pwkmg, we can find y; E.BQd‘j/\/R(T,o)(xj’ 0)
that R(y;,0) > R(z;,0) and R < 2R(z;,0) in ij/m(yj,()). Since d; — oo, the
rescaled flows (M™ x (—oo,O],yj,ng(, Q—lt)) converge locally smoothly to a limit -
o«
solution. But (since y; — o0o) this solution must contain a line, and hence split off a
line. u

Corollary 6.6. All two-dimensional k-solutions are compact.

Theorem 6.7. Let (M™ X (—00,0],9) be a k-solution. The ASYMPTOTIC VOLUME

RATIOY]

1 B 0
V(Mn’g[)) = hm sup vo ume( T(x(% ))
r—00 rn

18 zero.

Sketch. If n = 2, then M™ compact, and the claim is true. So suppose the claim
is true for some dimension n > 2 and let (M"™*! x (—o0,0],g) be a non-compact -
solution. By , (M™% (—00,0], g) splits off a line at infinity after rescaling. The
claim then follows from the inductive hypothesis, since, by the Bishop—Gromov volume
comparison theorem, volume(B,(z)) > Vr", which is invariant under rescaling, and
hence passes to the limit. O

6.3 Noncollapsing ancient solutions in three-dimensions. Perelman’s machin-
ery yields the following chatracterization of k-solutions in three dimensions [36).

Theorem 6.8 (Non-collapsing ancient solutions in three dimensions). Every connected
oriented three-dimensional k-solution is one of the following.

(1) A shrinking round spherical space form;

(2) A shrinking round cylinder or finite quotient;

(3) A C-component: an S® or RP? whose diameter, curvature and volume are all
bounded uniformly (between C~' and C) after rescaling to normalize any one
of them;

(4) A C-capped e-tube (after removing one C-cap and rescaling, it is € close to a
unit round cylinder of length e=1); or

(5) A doubly C-capped e-tube.

Sketch. A key step is to show that the space of pointed three-dimensional curvature
normalized x-solutions is compact.

After blowing down (taking the limit of )\29(.7 A-2p) 88 A N 0) we see an “asymptotic
shrinker”.

10his number is independent of the choice of point xg.
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Since the only asymptotic shrinking solitons are finite quotients of shrinking round
spheres or cylinders, every solution of sufficiently large normalized diameter is made
up of e-tubes and regions of uniformly bounded diameter.

Any example which is not a shrinking cylinder or quotient must satisfy Rm > 0.
By the soul theorem, such examples must be either compact or diffeomorphic to R3.
So a noncompact example with Rm > 0 must be C-capped (the existence of such a C'
comes from the compactness of the space of k-solutions).

A similar argument shows that a compact example either has uniformly bounded
diameter, or is a doubly-capped e-tube. In every case Rm > 0, so Hamilton’s theorem
implies that the manifold is diffeomorphic to a spherical space form. The uniformly
bounded diameter components are either round or C-components, where again C' comes
from the compactness of the space of k-solutions. O

In fact, there is now a complete list of such solutions.

Theorem 6.9 (Angenent-Brendle-Daskalopoulos-Sesum [4,8,|9]). BEvery -solution
in three dimensions is one of the following:

(1) a (static/shrinking) flat R3.
(2) a shrinking sphere.

(3) a shrinking cylinder.

(4) a radio-dish soliton.

(5) an ancient Steeden.

(6) an isometric quotient of one of the above.

6.4 Many examples in higher dimensions. There are a great many further exam-
ples of ancient Ricci flows of positive curvature in higher dimensions.

Example 6.2 (Generalized Steedens). Perelman’s construction generalizes to spheres
S™ of any dimension n > 3 and any bisymmetry class O(k) xO(n+1—k), k=3,...,n.
These examples have positive curvature and their volume does not collapse at any scale
as t — —o0.

Example 6.3 (Fateev’s ancient Hopf fibration [21]). The time-dependent metric
g =xX2(r,t)dr? +2(r,t) d6* + ©*(r, t) dw?

defined on (r,6,w) € (0,%) x S* x S* for t € (—00,0) by

cosh(—4t) sinh(—4t)

2 .
1) = 6.5
() (cos? 7 + sin? r cosh(—4t))(sin? r + cos? r cosh(—4t)) (6.5)
2 .
9 cos® r sinh(—4t)
t 6.5b
vt = sin? r 4 cos? r cosh(—4t) (6.5b)
2
h
(1) = sin” r sinh(—4t) (6.50)

cos? r + sin? r cosh(—4t)
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extends to S% and satisfies Ricci flow. Observe that g is invariant under the obvious
action of O(2) x O(2). (Interpreting (2r,6,w) ~ (cos(2r)e? sin(2r)e™) as standard
spherical polar coordinates on S® C R* = C x C, it is just the standard action of
0(2) x 0(2).)

Introducing the orthonormal basis e; = x7'0,, ea = 10y, e3 = p 10, the
curvature operator is diagonalized with diagonal components

Vs 1 < cos? r + sin? r cosh(—4t) 1 )
PRSI ) 6.6
sec(e1 A e2) 1) sinh(—4t) \sin?r + cos? r cosh(—4t) ~ cosh(—4t) (662)
Dss 1 sin? r 4 cos? r cosh(—4t) 1
_ P 2 b
sec(er A e3) o sinh(—47) < cos?r + sin? 7 cosh(—4t)  cosh(—4t) (6.6b)

Vsps 1
e cosh(—4t)sinh(—4t)’

sec(ea ANes) = —

where .
s(r,t) = /0 x(p,t)dp.

Since the function

cos? r + sin? r cosh(—4t)
=

sin? r + cos? r cosh(—4t)
is non-decreasing for r € [0, 5], we find that
1
> -
— cosh(—4t) sinh(—4t)
for each ¢ # j. In particular, g has positive curvature. Since it is not on the list

from Theorem its volume must collapse (relative to the scale of the curvature) as
t — —oo. Indeed, as t - —o0,

sec(e; A ;)

1
t) > ——m—— t) —1 d t) —1
X 1) = e h(r 1) > 1 and p(r,1)

for any r € (0, 5) and hence, for any point o on, say, the Clifford torus
[pe s ir(p) = 5} = {(Le, 1) : (0,0) € 5 x 511,

we have

];n(ax)R(-jt) ~ 0 but volume(B,(o,t),t) ~ 8r%r
r(0,t

as t — —oo for any large 7.

This example is related to the Hopf fibration S* < $2 — S2, and indeed generalizes
to a family of “explicit” ancient Ricci flows on the total spaces S?™*+! of the higher
dimensional Hopf fibrations S! < §?m+1 — CP™ [5]. These examples in some sense
generalize the ancient sausage solution on S2. So does the following.

Example 6.4 (The ancient pancake). For each n > 3, there is an O(2) x O(n — 1)
invariant ancient Ricci flow

g =x*(r,)dr® + ¢*(r, )d8? + (1, t) gn-2
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on (—%,%) x S x §"72 which extends to a Ricci flow on S™ with positive curvature

(where O(2) x O(n — 1) acts in the standard way). This example is not the shrinking
sphere. Indeed, max(-,t) ~ 1 as t — —oo (in particular, the ancient pancake is
volume collapsing at the scale of the curvature as t — —o0). Nor is g congruent to
Fateev’s ancient Hopf fibration in case n = 3, since max ¢(-,t) ~ —2¢t as t — —o0.

The gradient shrinking solitons with positive curvature operator are relatively easily
classified.

Theorem 6.10 (Munteanu-Wang [33]). Every n-dimensional gradient shrinking soli-
ton with non-negative curvature operator is either:
(1) a flat R™,
(2) a compact symmetric space,
(8) an orthogonal product of an (n—k)-dimensional compact symmetric space with
R* for somek=1,...,n—2, or

(4) an isometric quotient of one of these.

On the other hand, there are a great many steady soliton examples. In the positive
curvature setting, we have the following.
Example 6.5 (Lai’s flying wings I [27]). For each 6 € (0, §), there is an O(2) x O(n—2)
invariant steady soliton on R™, n > 3, which has positive curvature and is not the bowl
soliton. Indeed, its metric cone at infinity is the round cone of dimension n — 1 with
exterior angle . It is asymptotic to an S~ family of cigar solitons (times R"~2).
Example 6.6 (Lai’s flying wings II [27]). For each 6 € (0, ), thereis an O(3)xO(n—3)
invariant steady soliton on R”, n > 4, which has positive curvature and is not the bowl
soliton. Indeed, it is asymptotic to an S”~% family of three dimensional radio-dish
solitons (times R™"~3).

A more thorough examination of Ricci solitons in low dimensions may be found
in [14).

The full classification of ancient solutions is thus a very difficult question in general
(even under the assumption of positive curvature). The three dimensional case may be
within reach, however.

6.5 Exercises.
Exercise 6.1. Given \,C, D € R, find all solutions to the equation
'=Xf+Cf+D
by separating variables.
Exercise 6.2. Show that the eternal time-dependent metric on R x S' defined by
9eor) = 3(tanh(€ —t) + 1) (de? + d6?)

extends to R? (upon identifying {¢ = —oo} with a point) and is isometric to the
standard cigar. Hint: consider the variable r = arcsinh ef.
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Exercise 6.3. Verify equations . Deduce that the metric defined by (6.5)) does
indeed satisfy Ricci flow and has positive curvature operator.

Exercise 6.4. Prove that the only shrinking soliton metrics on S™, n > 2, with non-
negative curvature operator are the shrinking round metrics, ¢t — m gsn.
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